首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress, physical inactivity and high-fat (FAT) diets are associated with hepatic disorders such as metabolic syndrome (MS). The therapeutic effects of physical training (PT) were evaluated in rats with MS induced by FAT diet for 13 weeks, on oxidative stress and insulin signaling in the liver, during the last 6 weeks. FAT-sedentary (SED) rats increased body mass, retroperitoneal fat, mean arterial pressure (MAP) and heart rate (HR), and total cholesterol, serum alanine aminotransferase, glucose and insulin. Livers of FAT-SED rats increased superoxide dismutase activity, thiobarbituric acid-reactive substances, protein carbonyl and oxidized glutathione (GSSG); and decreased catalase activity, reduced glutathione/GSSG ratio, and the mRNA expression of insulin receptor substrate 1 (IRS-1) and serine/threonine kinase 2. FAT-PT rats improved in fitness and reduced their body mass, retroperitoneal fat, and glucose, insulin, total cholesterol, MAP and HR; and their livers increased superoxide dismutase and catalase activities, the reduced glutathione/GSSG ratio and the expression of peroxisome proliferator-activated receptor gamma and insulin receptor compared to FAT-SED rats. These findings indicated adaptive responses to PT by restoring the oxidative balance and insulin signaling in the liver and certain biometric and biochemical parameters as well as MAP in MS rats.  相似文献   

2.
In this study, we present an integrated strategy to deconvolute the metabolic signatures associated with the cholesterol lowering effect of berberine in the livers of Sprague?CDawley rats. The rats were dosed with berberine at 50?mg/kg. Urine samples and liver tissues were collected for the analysis of metabolite contents, while livers and kidneys were collected for histopathology. Metabolites such as fatty acids, cholesterol, glucose and others in liver were analyzed by gas chromatography/mass spectrometry. The urinary metabolites were analyzed using targeted profiling with liquid chromatography/tandem mass spectrometry and non-targeted profiling with proton nuclear magnetic resonance (1H NMR). Our results demonstrated that analysis of metabolites in rat urine samples using liquid chromatography/mass spectrometry (LC/MS) and 1H NMR produced complementary, consistent and reliable results. The administration of berberine resulted in a reduction of glucose, maltose, fatty acids (saturated and unsaturated) and cholesterol in the rat liver samples. The analysis of urinary metabolic profiles on different days showed that before the cholesterol reduction in the rat livers, a high rate of carbohydrate usage was found to be an early event (day 2). The results suggested that the animals utilized alternative energy sources by altering the synthesis and consumption of amino acids and fatty acids. In addition, changes in the level of glutamine for the treated animals on day 2 suggested that glutamine and glutamate metabolism could be affected. Since glutamine is a precursor for nucleotides synthesis and nucleotides are required for cell growth and replication, the results are consistent with the observed cholesterol lowering effect and weight reduction. Finally, our results demonstrated that the combination of LC/MS and 1H NMR provided a unique metabolic profile associated with the cholesterol lowering effect of berberine in rat livers.  相似文献   

3.
4.
A solvent system that extracts a maximum number of metabolites belonging to diverse chemical classes from complex biofluids, such as plasma, may offer useful inputs to understand the metabolic and physiological state of an individual. The present study compared seven solvent systems for extraction of metabolites from plasma. The extracts were analyzed by mass spectrometry (MS) and MS/MS (MS2) using a quadrupole time-of-flight liquid chromatography/MS system in positive and negative modes of ionization. Metabolites with molecular mass below 400 were identified using Human Metabolome Database MS2 and MS search interfaces. The acetone/isopropanol (2:1) system yielded promising results in positive ionization mode, as the maximum number of MS and MS2 features was detected in the extract. It was found to be superior in extraction of various classes of metabolites, especially organic acids, nucleosides and nucleoside derivatives, and heterocyclic molecules. Glycerophosphocholines in the mass range of 400–700 were found to be efficiently extracted by the methanol/chloroform/water (8:1:1) system. In negative mode as well, the maximum number of MS2 features was detected in methanol/chloroform/water and acetone/isopropanol extracts. The fingerprints of molecular features obtained in the negative and positive modes differed from each other to a significant extent.  相似文献   

5.
Zhao YY  Cheng XL  Wei F  Xiao XY  Sun WJ  Zhang Y  Lin RC 《Biomarkers》2012,17(1):48-55
An ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC Q-TOF MS) metabonomics approach was employed to study the serum metabolic profiling of adenine-induced chronic renal failure (CRF) rats. Acquired data were subjected to principal component analysis (PCA) for differentiating the CRF and the normal control groups. Potential biomarkers were screened by using S-plot and were identified by the accurate mass, isotopic pattern and MS/MS fragments information obtained from UPLC Q-TOF MS analysis. Significant differences in the serum level of creatinine, amino acids and LysoPCs were observed, indicating the perturbations of amino acid metabolism and phospholipid metabolism in adenine-induced CRF rats. This research proved that metabonomics is a promising tool for disease research.  相似文献   

6.
13C metabolic flux analysis (MFA) is based on carbon-labeling experiments where a specifically (13)C labeled substrate is fed. The labeled carbon atoms distribute over the metabolic network and the label enrichment of certain metabolic pools is measured by using different methods. Recently, MS methods have been dramatically improved-large and precise datasets are now available. MS data has to be preprocessed and corrected for natural stable mass isotopes. In this article we present (1). a new elegant method to correct MS measurement data for natural stable mass isotopes by infinite dimensional matrix calculus and (2). we statistically analyze and discuss a reconstruction of labeling pattern in metabolic precursors from biosynthesis molecules. Moreover, we establish a new method for consistency checking of MS spectra that can be applied for automatic error recognition in high-throughput flux analysis procedures. Preprocessing the measurement data changes their statistical properties which have to be considered in the subsequent parameter fitting process for (13)C MFA. We show that correcting for stable mass isotopes leads to rather small correlations. On the other hand, a direct reconstruction of a precursor labeling pattern from an aromatic amino acid measurement turns out to be critical. Reasonable results are only obtained if additional, independent information about the labeling of at least one precursor is available. A versatile MatLab tool for the rapid correction and consistency checking of MS spectra is presented. Practical examples for the described methods are also given.  相似文献   

7.
Insulin resistance (IR) plays a critical role in metabolic syndrome (MS). Previous studies have demonstrated that activated ROCK is increased in MS patients. However, the effect of Rho-kinase (ROCK) on IR has not been definitely determined. Thus, the aims of the present study were to determine whether ROCK activation induces IR or affects myocardial structure and function, as well as the possible mechanisms underlying this process. Wistar rats fed high fat, high glucose and high salt diet sewed as model of MS and we used transmission electron microscopy, echocardiogram technology, and terminal deoxynucleotidyl transferase-mediated DNA nick-end labeling staining to identify any myocardial damage. The protein levels of MYPT-1 (characteristic of ROCK activation), IRS-1 and AKT were analyzed by immunohistochemistry and Western blotting. In hearts from MS rats, we found increased protein levels of phospho-MYPT-1 and phospho-IRS-1 (Ser307) and decreased phospho-AKT compared to levels in normal rats. In conclusion, the results suggest that ROCK-mediated IR is involved in the development of myocardial impairments in MS rats and that this effect is mediated probably via the IRS-1/PI3-kinase/AKT pathway.  相似文献   

8.
Metabolic differences of experimental animals contribute to pharmacological variations. Sprague?CDawley (SD) and Wistar rats are commonly used experimental rats with similar genetic background, and considered interchangeable in practical researches. In this study, we present the urinary metabolomics results, based on gas chromatography coupled to mass spectrometry (GC/MS), which reveal the systematic metabolic differences between SD and Wistar rats under different perturbations such as fasting, feeding, and consecutive acute ethanol interventions. The different metabotypes between the two strains of rats involve a number of metabolic pathways and symbiotic gut microflora. SD rats exhibited higher individualized metabolic variations in the fasting and feeding states, and a stronger ability to recover from an altered metabolic profile with less hepatic injury from the consecutive ethanol exposure, as compared to Wistar rats. In summary, the GC/MS-based urinary metabolomics studies demonstrated an intrinsic metabolic difference between SD and Wistar rats, which warrants consideration in experimental design using these animal strains.  相似文献   

9.
The clinical presentation of type 1 diabetes is preceded by a prodrome of beta cell autoimmunity. We probed the short period of subtle metabolic abnormalities, which precede the acute onset of diabetes in the spontaneously diabetic BB rat, by analyzing the serum metabolite profile detected with combined gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS). We found that the metabolite pattern prior to diabetes included 17 metabolites, which differed between individual diabetes prone (DP) BB rats and their age and sex matched diabetes resistant (DR) littermates. As the metabolite signature at the 40?days of age baseline failed to distinguish DP from DR, there was a brief 10-day period after which the diabetes prediction pattern was observed, that includes fatty acids (e.g. oleamide), phospholipids (e.g. phosphocholines) and amino acids (e.g. isoleucine). It is concluded that distinct changes in the serum metabolite pattern predict type 1 diabetes and precede the appearance of insulitis in spontaneously diabetic BB DP rats. This observation should prove useful to dissect mechanisms of type 1 diabetes.  相似文献   

10.
A protocol for the metabolic profiling of rat liver was developed based on ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) to explore metabolic state directly. Methanol/water (4:1, v:v) was selected as the optimal extraction solvent. The established method was validated with a linearity over the 10-5000 ng/mL for internal standards (IS) and got an average correlation coefficient of 0.9986. The intra-day and inter-day RSD for most endogenous compounds were below 15%. And the absolute recovery of IS was from 84.8% to 109.1%. Liver tissues from diabetic and control rats were enrolled in the subsequent study to show the usefulness of the method. A clear classification between the control and model animals was achieved, some significant metabolites were successfully filtered. These metabolites reflected the abnormal metabolism of diabetic rats. This initial application indicated that the method is suitable and reliable for liver tissue metabolic profiling. It is expected this protocol could also be extended to metabonomic studies of other tissues.  相似文献   

11.
A novel and relatively simple analytical method for the separation, characterisation and semi-quantitation of phospholipids (PLs) from extracts of complex biological samples has been developed. This methodology allows PL extracts from cells and tissues to be analysed by liquid chromatography (LC) coupled to electrospray ionisation mass spectrometry (ESI-MS). Complex mixtures of PLs were separated on a high-performance liquid chromatography (HPLC) system using 0.5% ammonium hydroxide in methanol/water/hexane/formate mixture with UV detection at 205 nm. Identification and structural characterisation of molecular species were carried out utilising ESI-MS and MS/MS in the negative ion mode.The abnormal accumulation of PLs (phospholipidosis) was induced in male Sprague-Dawley rats by administration of the cationic amphiphilic drug (CAD), amiodarone. Analysis of the PL profile of liver and lung tissues, lymphocytes and serum from treated rats was carried out using this analytical procedure (LC-ESI/MS/MS). Differences in PL profiles between treated and untreated animals were highlighted by principal component analysis (PCA). This led to the selection of a potential metabolic marker of phospholipidosis (PLD) identified as a lyso-bis-phosphatidic acid (LBPA) derivative, also known as bis(monoglycero)phosphate (BMP). This PL was absent in control animals but was present in quantifiable amounts in all samples from amiodarone-treated rats.  相似文献   

12.
Bouwman F  Renes J  Mariman E 《Proteomics》2004,4(12):3855-3863
Differential gel electrophoresis followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is a commonly used protein profiling method. However, observed changes can be explained in multiple ways, one of which is by the protein turnover rate. In order to easily and rapidly obtain information on both the identity and turnover of individual proteins, we applied a combination of protein labeling with L-(ring-2,3,4,5,6 2H5) phenylalanine and MALDI-TOF MS. While the spectrum reveals the identity of a protein, mass isotopomer analysis provides information about the rate of protein labeling as a measure of synthesis or turnover. Using this approach on mature 3T3-L1 adipocytes, we were able to discriminate between rapidly and slowly metabolised proteins. In our isolate, proteins of the cytoskeleton appeared to be slowly metabolised, whereas components of the extracellular matrix, in particular collagen type I alpha 1 (COL1A1) and collagen type I alpha 2 (COL1A2) showed rapid accumulation of newly synthesized proteins. Both proteins appeared to be metabolised in the same ratio as they are present in collagen fibers, i.e. 2:1 (COL1A1: COL1A2). In addition, functionally related proteins were also readily labeled. Taken together, we have shown that a combination of stable isotope labeling and protein profiling by gel electrophoresis and MALDI-TOF analysis can simultaneously provide information on the identity and relative metabolic rate of proteins in eukaryotic cells in a simple, nonhazardous and rapid-throughput way.  相似文献   

13.
We have developed a metabolic profiling scheme based on direct-infusion Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The scheme consists of: (1) reproducible data collection under optimized FT-ICR/MS analytical conditions; (2) automatic mass-error correction and multivariate analyses for metabolome characterization using a newly developed metabolomics tool (DMASS software); (3) identification of marker metabolite candidates by searching a species-metabolite relationship database, KNApSAcK; and (4) structural analyses by an MS/MS method. The scheme was applied to metabolic phenotyping of Arabidopsis (Arabidopsis thaliana) seedlings treated with different herbicidal chemical classes for pathway-specific inhibitions. Arabidopsis extracts were directly infused into an electrospray ionization source on an FT-ICR/MS system. Acquired metabolomics data were comprised of mass-to-charge ratio values with ion intensity information subjected to principal component analysis, and metabolic phenotypes from the herbicide treatments were clearly differentiated from those of the herbicide-free treatment. From each herbicide treatment, candidate metabolites representing such metabolic phenotypes were found through the KNApSAcK database search. The database search and MS/MS analyses suggested dose-dependent accumulation patterns of specific metabolites including several flavonoid glycosides. The metabolic phenotyping scheme on the basis of FT-ICR/MS coupled with the DMASS program is discussed as a general tool for high throughput metabolic phenotyping studies.  相似文献   

14.
Direct-infusion mass spectrometry (MS) was applied to study the metabolic effects of the symbiosis between the endophytic fungus Neotyphodium lolii and its host perennial ryegrass (Lolium perenne) in three different tissues (immature leaf, blade, and sheath). Unbiased direct-infusion MS using a linear ion trap mass spectrometer allowed metabolic effects to be determined free of any preconceptions and in a high-throughput fashion. Not only the full MS(1) mass spectra (range 150-1,000 mass-to-charge ratio) were obtained but also MS(2) and MS(3) product ion spectra were collected on the most intense MS(1) ions as described previously (Koulman et al., 2007b). We developed a novel computational methodology to take advantage of the MS(2) product ion spectra collected. Several heterogeneous MS(1) bins (different MS(2) spectra from the same nominal MS(1)) were identified with this method. Exploratory data analysis approaches were also developed to investigate how the metabolome differs in perennial ryegrass infected with N. lolii in comparison to uninfected perennial ryegrass. As well as some known fungal metabolites like peramine and mannitol, several novel metabolites involved in the symbiosis, including putative cyclic oligopeptides, were identified. Correlation network analysis revealed a group of structurally related oligosaccharides, which differed significantly in concentration in perennial ryegrass sheaths due to endophyte infection. This study demonstrates the potential of the combination of unbiased metabolite profiling using ion trap MS and advanced data-mining strategies for discovering unexpected perturbations of the metabolome, and generating new scientific questions for more detailed investigations in the future.  相似文献   

15.
Urinary metabolic perturbations associated with acute and chronic acetaminophen-induced hepatotoxicity were investigated using nuclear magnetic resonance (NMR) spectroscopy and ultra performance liquid chromatography/mass spectrometry (UPLC/MS) metabonomics approaches to determine biomarkers of hepatotoxicity. Acute and chronic doses of acetaminophen (APAP) were administered to male Sprague-Dawley rats. NMR and UPLC/MS were able to detect both drug metabolites and endogenous metabolites simultaneously. The principal component analysis (PCA) of NMR or UPLC/MS spectra showed that metabolic changes observed in both acute and chronic dosing of acetaminophen were similar. Histopathology and clinical chemistry studies were performed and correlated well with the PCA analysis and magnitude of metabolite changes. Depletion of antioxidants (e.g. ferulic acid), trigonelline, S-adenosyl-l-methionine, and energy-related metabolites indicated that oxidative stress was caused by acute and chronic acetaminophen administration. Similar patterns of metabolic changes in response to acute or chronic dosing suggest similar detoxification and recovery mechanisms following APAP administration.  相似文献   

16.
Mutations in the gene encoding UDP-glucuronosyltransferase 1A1 (UGT1A1) may reduce the glucuronidation of estradiol, bilirubin, etc. In the present study, we used a liquid chromatography-tandem mass spectrometry (LC/MS/MS) method to assay the activities of recombinant mutated UGT1A1 toward 17beta-estradiol (E2), by determining its glucuronide (E2G) content. Direct evidence for glucuronide formation was provided by E2G-specific ion peaks. The UGT1A1 activities of G71R (exon 1), F83L (exon 1), I322V (exon 2) and G493R (exon 5) mutants were 24, 30, 18 and 0.6% of the normal UGT1A1 activity, respectively. In conclusion, our study showed that LC/MS/MS enabled accurate evaluation of the effects of mutations on recombinant UGT1A1 activity towards E2.  相似文献   

17.
Atrazine is an herbicide which has shown potential antimalarial effects both in vitro and in vivo in rats. In order to study the metabolism of atrazine in rat livers, we developed a sensitive LC/MS/MS method for the identification of atrazine and several of its metabolites. Using this method, we identified one previously unreported metabolite with a mass of 211 Da in addition to two known metabolites. This new metabolite was confirmed to be N-ethyl-6-methoxy-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine, also known as atraton, by comparison of the LC/MS/MS mass spectra and the retention time to those of a commercial standard.  相似文献   

18.
Insulin secretion from pancreatic β-cells is controlled by complex metabolic and energetic changes provoked by exposure to metabolic fuels. Perturbations in these processes lead to impaired insulin secretion, the ultimate cause of T2D (Type 2 diabetes). To increase our understanding of stimulus-secretion coupling and metabolic processes potentially involved in the pathogenesis of T2D, a comprehensive investigation of the metabolic response in the glucose-responsive INS-1 832/13 and glucose-unresponsive INS-1 832/2 β-cell lines was performed. For this metabolomics analysis, we used GC/MS (gas chromatography/mass spectrometry) combined with multivariate statistics. We found that perturbed secretion in the 832/2 line was characterized by disturbed coupling of glycolytic and TCA (tricarboxylic acid)-cycle metabolism. The importance of this metabolic coupling was reinforced by our observation that insulin secretion partially could be reinstated by stimulation of the cells with mitochondrial fuels which bypass glycolytic metabolism. Furthermore, metabolic and functional profiling of additional β-cell lines (INS-1, INS-1 832/1) confirmed the important role of coupled glycolytic and TCA-cycle metabolism in stimulus-secretion coupling. Dependence of the unresponsive clones on glycolytic metabolism was paralleled by increased stabilization of HIF-1α (hypoxia-inducible factor 1α). The relevance of a similar perturbation for human T2D was suggested by increased expression of HIF-1α target genes in islets from T2D patients.  相似文献   

19.
20.
The role of the pituitary-adrenal axis in the mediation of morphine-induced hyperthermia of conscious, unrestrained rats was investigated. Rectal (TR) and tail (Tt) temperatures and oxygen uptake rates (VO2) were measured following peripheral or central injection of morphine sulphate (MS) in groups of Sprague-Dawley rats before and after adrenalectomy (adx), hypophysectomy (hyp), or pituitary suppression (via dexamethasone treatment). The hyperthermic TR responses of groups given MS either subcutaneously (5 or 15 mg/kg) or directly into the preoptic anterior hypothalamus (POAH, 1 or 10 micrograms/microL) before adx were not different upon retesting with the same dose of MS 2 weeks later following adx. The hyperthermia with MS was not caused by vasoconstriction or by increases in basal metabolic rate, for Tt rose after the opiate injections whereas oxygen uptake rates (VO2) were reduced. Unexpectedly, the TR following POAH injections of sterile saline (SS) or deionized water after adx increased from those seen before adx. Adx groups supplemented with dexamethasone phosphate (either chronically with 20 micrograms/kg daily for 2 weeks post-adx before retesting with MS or acutely with 250 micrograms/kg 2 h before retesting) showed a hyperthermia to MS (5 mg/kg sc or 1.0 microgram/microL POAH) similar to that seen before adx. However, dexamethasone phosphate (250 micrograms/kg) supplementation to adx rats, that received POAH injections of SS, did reduce the rise in TR. Hyp rats given MS (5 mg/kg, sc) also evoked hyperthermic responses similar to those of non-hyp control groups. The results clearly show that the acute hyperthermia of unrestrained rats induced by either peripheral or central injections of morphine is not caused by activation of the pituitary-adrenal axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号