首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The energies of interactions between guanine and cytosine in various mutual positions were calculated by the methods of molecular mechanics with refined atom-atom potential functions and the quantum mechanics theory of density functional. Both methods indicate three types of mutual positions of bases in local energy minima. These types correspond to (1) nearly coplanar base positions with intermolecular hydrogen bond formation (base pairing); (2) arrangements of two bases in nearly parallel planes one above another (base stacking); and (3) nearly perpendicular positions of base planes. According to the calculations, the global energy minimum corresponds to the Watson-Crick base pair with three hydrogen bonds. A specific feature of the pair is a transition from many positions of type (2) to positions of type (1) without any energy barrier. This feature is revealed by both methods. Another special feature of this pair is a deviation, for most of mutual base positions, of the amine group atoms from the ring plane, the deviation being more pronounced for Gua. These features are important for understanding the conformational behavior of DNA fragments and the RNA structure.  相似文献   

2.
Differently bound water molecules of dipalmitoylphosphatidylcholine (DPPC)-H2O system were investigated with differential scanning calorimetry (DSC). According to a method previously reported by us, the ice-melting DSC curves of the DPPC-H2O samples of varying water contents were deconvoluted into multiple components, and the ice-melting enthalpies for the individual deconvoluted components were used to estimate average molar ice-melting enthalpies for freezable interlamellar and bulk waters, respectively. With these average molar ice-melting enthalpies, the numbers of differently bound water molecules of the DPPC-H2O system were calculated at varying water contents and were used to construct a water distribution diagram of this system. Furthermore, to evaluate the reliability of the present DSC deconvolution method, 2H-NMR T1 measurements of DPPC-2H2O system were carried out at 5 degrees C of the gel phase temperature, and components and fractions for differently bound water (2H2O) molecules were estimated from the analysis of nonexponential magnetization recovery curves.  相似文献   

3.
Liu Y  Gregersen BA  Hengge A  York DM 《Biochemistry》2006,45(33):10043-10053
Primary and secondary kinetic and equilibrium isotope effects are calculated with density-functional methods for the in-line dianionic methanolysis of the native (unsubstituted) and thio-substituted cyclic phosphates. These reactions represent reverse reaction models for RNA transesterification under alkaline conditions. The effect of solvent is treated with explicit (single and double) water molecules and self-consistently with an implicit (continuum) solvation model. Singly substituted reactions at the nonbridging O(P1) position and bridging O(2)('), O(3)('), and O(5)(') positions and a doubly substituted reaction at the O(P1) and O(P2) positions were considered. Aqueous free energy barriers are calculated, and the structures and bond orders of the rate-controlling transition states are characterized. The results are consistent with available experimental data and provide useful information for the interpretation of measured isotope and thio effects used to probe mechanism in phosphoryl transfer reactions catalyzed by enzymes and ribozymes.  相似文献   

4.
It has been shown that water molecules participate in the proton pathway of bacteriorhodopsin. Large efforts have been made to determine with various biophysical methods the number of water molecules involved. Neutron diffraction H2O/D2O exchange experiments have been often used to reveal the position of water even with low-resolution diffraction data. With this technique, care must be taken with the limitations of the difference Fourier method which are commonly applied to analyze the data. In this paper we compare the results of the difference Fourier method applied to measured diffraction data (not presented here) and models with those from alternative methods introduced here: (1) a computer model calculation procedure to determine a label's scattering length density based on a comparison of intensity differences derived from models and intensity differences from our measurements; (2) a method based on the Parseval formula. Both alternative methods have been evaluated and tested using results of neutron diffraction experiments on purple membranes (Hauss et al. 1994). Our findings indicate that the difference Fourier method applied to low-resolution diffraction data can successfully determine the position of localized water molecules but underestimates their integrated scattering length density in the presence of labels in other positions. Furthermore, we present the results of neutron diffraction experiments on purple membranes performed to determine the number of water molecules in the projected area of the Schiff base at 86%, 75% and 57% relative humidity (r.h.). We found 19 +/- 2 exchangeable protons at 75% r.h., which means at least 8-9 water molecules are indispensable for normal pump function.  相似文献   

5.
Short contacts of water molecules with the pi-faces of aromatic residues were studied in a set of 75 very high resolution (<1.1 A) protein X-ray crystal structures. For 18 water molecules found at distances to aromatic midpoints <3.5 A, it was attempted to assign the hydrogen bond configuration (without experimental knowledge of the H-atom positions) by inspection of the surrounding. For approximately one-quarter of the cases, evidence for an O-H...pi hydrogen bond was found, another one-quarter does not form such a hydrogen bond, and for the remaining half, no conclusive assignment could be made. The results confirm the relatively frequent occurrence of aromatic hydrogen bonding in biomolecular hydration, but also underline difficulties in hydrogen bond assignment without reliable knowledge of the H-atom positions.  相似文献   

6.
Fasting gluconeogenesis (GNG) is often quantified using the 2H2O technique, which is based on plasma 2H2O enrichment and ensuing enrichment of plasma glucose at the C5 and C2 positions. Fractional (fr)GNG can be calculated using the ratio of C5 to C2 enrichment or the ratio of C5 to plasma 2H2O enrichment. For the latter, equilibration of 2H2O and C2 is required. The optimal equilibration period of 2H2O and C2 remains to be elucidated. In six healthy male subjects fasted for 18 h, we studied the effects of 3-, 5-, and 15-h 2H2O incubation periods on 1) the equilibration of plasma 2H2O and C2 glucose enrichment, 2) the measurement of frGNG, and 3) C5 labeling of hepatic glycogen after 1 mg of glucagon administration. After 3-h 2H2O incubation, plasma 2H2O and C2 were not equilibrated, frGNG C5/2H2O and C5/C2 were also different as was gluconeogenesis calculated with C5/2H2O and C5/C2. After 5- and 15-h 2H2O incubation, plasma 2H2O and C2 were equilibrated, and frGNG C5/2H2O and C5/C2 were similar, as was GNG calculated with C5/2H2O and C5/C2. After glucagon administration, no difference of C5 enrichment was found between 3, 5, and 15 h of 2H2O incubation. In conclusion, for reliable measurement of GNG in healthy subjects with C5/2H2O incubation periods longer than 3 h are required. After 5- and 15-h 2H2O incubation, GNG can be reliably measured with C5/2H2O. Gluconeogenetic labeling of glycogen did not affect the results after 3, 5, or 15 h of 2H2O incubation.  相似文献   

7.
The two-step crystallization of water in multilamellar vesicles (MLVs) of phosphatidylcholines has been investigated. The main crystallization occurs near -15 degrees C and involves bulk water. Contrary to unilamellar vesicles, a sub-zero phase transition is observed for MLVs at -40 degrees C that corresponds to the crystallization of interstitial water, as proved by Fourier transform infrared absorption and differential scanning calorimetry (DSC) experiments. Furthermore, by means of the DSC method and, more specifically, using the enthalpy change values Delta H(sub) at the sub-zero transition, the number of water molecules per 1,2-dipalmitoylphosphatidylcholine (DPPC) molecule giving rise to this transition has been estimated for different H(2)O/DPPC molar ratios. The curve of the molecular fraction of water molecules involved in the sub-zero transition versus the H(2)O/DPPC molar ratio exhibits a maximum for H(2)O/DPPC equal to 27 (40% in mass of water) and tends towards zero for H(2)O/DPPC ratio values approaching that of the swelling limit of the membrane. A smaller enthalpy value of the sub-zero transition is found for 1-oleoyl-2-palmitoyl-3-phosphatidylcholine (OPPC) than for DPPC. This may be explained by the decrease of interstitial water's quantity when the lipid contains an unsaturated chain. When troxerutin, a hydrophilic drug, is added to the DPPC multilayers, the decrease of Delta H(sub) and melting enthalpy of bulk water is attributed to a decrease of the entropy of the liquid phase owing to the network of water molecules surrounding troxerutin molecules. In all cases, the experiments revealed that the sub-zero transition occurs only in the presence of excess water with respect to the swelling limit of membranes. This evidence could be, at least qualitatively, related to an increase of membrane pressure on interstitial water subsequent to bulk water crystallization.  相似文献   

8.
Monte Carlo simulations of the radiolysis of neutral liquid water and 0.4 M H(2)SO(4) aqueous solutions at ambient temperature are used to calculate the variations of the primary radical and molecular yields (at 10(-6)s) as a function of linear energy transfer (LET) in the range approximately 0.3 to 6.5 keV/micrometer. The early energy deposition is approximated by considering short (approximately 20-100 micrometer) high-energy (approximately 300-6.6 MeV) proton track segments, over which the LET remains essentially constant. The subsequent nonhomogeneous chemical evolution of the reactive species formed in these tracks is simulated by using the independent reaction times approximation, which has previously been used successfully to model the radiolysis of water under various conditions. The results obtained are in good general agreement with available experimental data over the whole LET range studied. After normalization of our computed yields relative to the standard radical and molecular yields for (60)Co gamma radiation (average LET approximately 0.3 keV/micrometer), we obtain empirical relationships of the primary radiolytic yields as a function of LET over the LET range studied. Such relationships are of practical interest since they allow us to predict a priori values of the radical and molecular yields for any radiation from the knowledge of the average LET of this radiation only. As an application, we determine the corresponding yields for the case of (137)Cs gamma radiation. For this purpose, we use the value of approximately 0.91 keV/micrometer for the average LET of (137)Cs gamma rays, chosen so that our calculated yield G(Fe(3+)) for ferrous-ion oxidation in air-saturated 0.4 M sulfuric acid reproduces the value of 15.3 molecules/100 eV for this radiation recommended by the International Commission on Radiation Units and Measurements. The uncertainty range on those primary radical and molecular yields are also determined knowing the experimental error (approximately 2%) for the measured G(Fe(3+)) value. The following values (expressed in molecules/100 eV) are obtained: (1) for neutral water: G(e(-)(aq)) = 2.50 +/- 0.16, G(H(.)) = 0.621 +/- 0.019, G(H(2)) = 0.474 +/- 0.025, G((.)OH) = 2.67 +/- 0.14, G(H(2)O(2)) = 0.713 +/- 0.031, and G(-H(2)O) = 4.08 +/- 0.22; and (2) for 0.4 M H(2)SO(4) aqueous solutions: G(H(.)) = 3.61 +/- 0.09, G(H(2)) = 0.420 +/- 0.019, G((.)OH) = 2.78 +/- 0.12, G(H(2)O(2)) = 0.839 +/- 0.037, and G(-H(2)O) = 4.46 +/- 0.16. These computed values are found to differ from the standard yields for (60)Co gamma rays by up to approximately 6%.  相似文献   

9.
The basis of the doubly labeled water method is measurement of the differential rates of disappearance of two isotopes of water (H2 18O and either 2H2O or 3H2O, administered at the start of the study) from body water. Published studies indicate that, in its current forms, this technique can be used to provide accurate and reasonably precise information on carbon dioxide production, total body water, and water intake in free-living humans and many small animals. Total energy expenditure can be calculated from carbon dioxide production with little loss of precision. Metabolizable energy intake can also be predicted, as the sum of total energy expenditure plus an estimate for the change in body energy stores during the measurement, but this prediction is unlikely to be accurate and precise unless the subject is in approximate energy balance.  相似文献   

10.
The disaccharide, alpha-maltose, forms the molecular basis for the analysis of the structure of starch, and determining the conformational energy landscape as the molecule oscillates around the glycosidic bonds is of importance. Thus, it is of interest to determine, using density functionals and a medium size basis set, a relaxed isopotential contour map plotted as a function of the phi(H) and psi(H) dihedral angles. The technical aspects include the method of choosing the starting conformations, the choice of scanning step size, the method of constraining the specific dihedral angles, and the fitting of data to obtain well defined contour maps. Maps were calculated at the B3LYP/6-31+G( *) level of theory in 5 degrees intervals around the (phi(H),psi(H))=(0 degrees ,0 degrees ) position, out to approximately +/-30 degrees or greater, for gg-gg'-c, gg-gg'-r, gt-gt'-c, gt-gt'-r, tg-tg'-c, and tg-tg'-r conformers, as well as one-split gg(c)-gg'(r) conformer. The results show that the preferred conformation of alpha-maltose in vacuo depends strongly upon the hydroxyl group orientations ('c'/'r'), but the energy landscape moving away from the minimum-energy position is generally shallow and transitions between conformational positions can occur without the addition of significant energy. Mapped deviations of selected parameters such as the dipole moment; the C1-O1-C4', H1-C1-O1, and H4'-C4'-O1 bond angles; and deviations in hydroxymethyl rotamers, O5-C5-C6-O6, O5'-C5'-C6'-O6', C5-C6-O6-H, and C5'-C6'-O6'-H', are presented. These allow visualization of the structural and energetic changes that occur upon rotation about the glycosidic bonds. Interactions across the bridge are visualized by deviations in H(O2)...O3', H(O3')...O2, and H1...H4' distances and the H(O2)-O2-C2-C1 and H'(O3')-O3'-C3'-C4' hydroxyl dihedral angles.  相似文献   

11.
Many approaches to discovering the interaction energy of molecular transition dipoles use the well-known coefficient xi(phi, psi (1) psi (2)) = (cos phi - 3 cos psi (1) cos psi (2))(2), where phi, Psi (1), and Psi (2) are inter-dipole angles. Unfortunately, this formula often yields rather approximate results, in particular, when it is applied to closely positioned molecules. This problem is of great importance when dealing with energy migration in photosynthetic organisms, because the major part of excitation transfers in their chlorophyllous antenna proceed between closely positioned molecules. In this paper, the authors introduce corrected values of the orientation factor for several types of mutual orientation of molecules exchanging with electronic excitations for realistic ratios of dipole lengths and spacing. The corrected magnitudes of interaction energies of neighboring bacteriochlorophyll molecules in LH2 and LH1 light-absorbing complexes are calculated for the class of photosynthetic purple bacteria. Some advantageous factors are revealed in their mutual positions and orientations in vivo.  相似文献   

12.
The doubly labeled water (DLW, 2H(2)18O) method is a highly accurate method for measuring energy expenditure (EE). A possible source of error is bolus fluid intake before body water sampling. If there is bolus fluid intake immediately before body water sampling, the saliva may reflect the ingested water disproportionately, because the ingested water may not have had time to mix fully with the body water pool. To ascertain the magnitude of this problem, EE was measured over a 5-day period by the DLW method. Six subjects were dosed with 2H2(18)O. After the reference salivas for the two-point determination were obtained, subjects drank water (700-1,000 ml), and serial saliva samples were collected for the next 3 h. Expressing the postbolus saliva enrichments as a percentage of the prebolus value, we found 1) a minimum in the saliva isotopic enrichments were reached at approximately 30 min with the minimum for 2H (95.48 +/- 0.43%) being significantly lower than the minimum for 18O (97.55 +/- 0.44, P less than 0.05) and 2) EE values calculated using the postbolus isotopic enrichments are appreciably higher (19.9 +/- 7.5%) than the prebolus reference values. In conclusion, it is not advisable to collect saliva samples for DLW measurements within approximately 1 h of bolus fluid intake.  相似文献   

13.
A beta-glucosidase with the molecular mass of 160,000 Da was purified to homogeneity from cell extract of a cellulolytic bacterium, Cellulomonas uda CS1-1. The kinetic parameters (Km and Vmax) of the enzyme were determined with pNP-cellooligosccharides (DP 1-5) and cellobiose. The molecular orbital theoretical studies on the cellulolytic reactivity between the pNP-cellooligosaccharides as substrate (S) molecules and the purified beta-glucosidase (E) were conducted by applying the frontier molecular orbital (FMO) interaction theory. The results of the FMO interaction between E and S molecules verified that the first stage of the reaction was induced by exocyclic cleavage, which occurred in an electrophilic reaction based on a strong charge-controlled reaction between the highest occupied molecular orbital (HOMO) energy of the S molecule and the lowest occupied molecular orbital (LUMO) energy of the hydronium ion (H3O+), more than endocyclic cleavage, whereas a nucleophilic substitution reaction was induced by an orbital-controlled reaction between the LUMO energy of the oxonium ion (SH+) protonated to the S molecule and the HOMO energy of the H2O2 molecule. A hypothetic reaction route was proposed with the experimental results in which the enzymatic acid-catalyst hydrolysis reaction of E and S molecules would be progressed via SN1 and SN2 reactions. In addition, the quantitative structure-activity relationships (QSARs) between these kinetic parameters showed that Km has a significant correlation with hydrophobicity (logP), and specific activity has with dipole moment, respectively.  相似文献   

14.
Diuron, a chlorine-substituted dimethyl herbicide, is widely used in agriculture. Though the degradation of diuron in water has been studied much with experiments, little is known about the detailed degradation mechanism from the molecular level. In this work, the degradation mechanisms for OH-induced reactions of diuron in water phase are investigated at the MPWB1K/6–311+G(3df,2p)//MPWB1K/6–31+G(d,p) level with polarizable continuum model (PCM) calculation. Three reaction types including H-atom abstraction, addition, and substitution are identified. For H-atom abstraction reactions, the calculation results show that the reaction abstracting H atom from the methyl group has the lowest energy barrier; the potential barrier of ortho- H (H1’) abstraction is higher than the meta- H abstraction, and the reason is possibly that part of the potential energy is to overcome the side chain torsion for the H1’ abstraction reaction. For addition pathways, the ortho- site (C (2) atom) is the most favorable site that OH may first attack; the potential barriers for OH additions to the ortho- sites (pathways R7 and R8) and the chloro-substituted para- site (R10) are lower than other sites, indicating the ortho- and para- sites are more favorable to be attacked, matching well with the -NHCO- group as an ortho-para directing group.
Figure
Representative pathways including abstraction, addition and substitution for OH and diuron reactions  相似文献   

15.
The possibility of the inclusion of water molecules in the formation of mismatched nucleotide pairs was considered in relation to the mechanisms of point errors in template directed biosynthesis. Calculations of the intermolecular interaction energy for systems containing two bases and one water molecule were carried out by the method of atom-atom potential functions. There exist energy minima for each base pair, corresponding to a single N--H...O or N--H...N H-bond between the bases and H-bonding of the water molecule with both bases. The relative positions of glycosyl bonds in some of these minima are closer to those for Watson--Crick pairs, than the positions of minima for these pairs without water. For other minima, the H-bond formation between the water molecule and the two bases additionally stabilizes the relative base position in wobble-pairs with two H-bonds between the bases. The base and water positions in energy minima are compared with the positions in some pairs proposed on the basis of NMR and X-ray data for double helical oligonucleotides.  相似文献   

16.
The structures of ZI- and ZII-form RNA and DNA oligonucleotides were energy minimized in vacuum using the AMBER molecular mechanics force field. Alternating C-G sequences were studied containing either unmodified nucleotides, 8-bromoguanosine in place of all guanosine residues, 5-bromocytidine in place of all cytidine residues, or all modified residues. Some molecules were also energy minimized in the presence of H2O and cations. Free energy perturbation calculations were done in which G8 and C5 hydrogen atoms in one or two residues of Z-form RNAs and DNAs were replaced in a stepwise manner by bromines. Bromination had little effect on the structures of the energy-minimized molecules. Both the minimized molecular energies and the results of the perturbation calculations indicate that bromination of guanosine at C8 will stabilize the Z forms of RNA and DNA relative to the nonbrominated Z form, while bromination of cytidine at C5 stabilizes Z-DNA and destabilizes Z-RNA. These results are in agreement with experimental data. The destabilizing effect of br5C in Z-RNAs is apparently due to an unfavorable interaction between the negatively charged C5 bromine atom and the guanosine hydroxyl group. The vacuum-minimized energies of the ZII-form oligonucleotides are lower than those of the corresponding ZI-form molecules for both RNA and DNA. Previous x-ray diffraction, nmr, and molecular mechanics studies indicate that hydration effects may favor the ZI conformation over the ZII form in DNA. Molecular mechanics calculations show that the ZII-ZI energy differences for the RNAs are greater than three times those obtained for the DNAs. This is due to structurally reinforcing hydrogen-bonding interactions involving the hydroxyl groups in the ZII form, especially between the guanosine hydroxyl hydrogen atom and the 3'-adjacent phosphate oxygen. In addition, the cytidine hydroxyl oxygen forms a hydrogen bond with the 5'-adjacent guanosine amino group in the ZII-form molecule. Both of these interactions are less likely in the ZI-form molecule: the former due to the orientation of the GpC phosphate away from the guanosine ribose in the ZI form, and the latter apparently due to competitive hydrogen bonding of the cytidine 2'-hydroxyl hydrogen with the cytosine carbonyl oxygen in the ZI form. The hydrogen-bonding interaction between the cytidine hydroxyl oxygen and the 5'-adjacent guanosine amino group in Z-RNA twists the amino group out of the plane of the base. This may be responsible for differences in the CD and Raman spectra of Z-RNA and Z-DNA.  相似文献   

17.
The role of water molecules in assisting proton transfer (PT) is investigated for the proton-pumping protein ferredoxin I (FdI) from Azotobacter vinelandii. It was shown previously that individual water molecules can stabilize between Asp(15) and the buried [3Fe-4S](0) cluster and thus can potentially act as a proton relay in transferring H(+) from the protein to the μ(2) sulfur atom. Here, we generalize molecular mechanics with proton transfer to studying proton transfer reactions in the condensed phase. Both umbrella sampling simulations and electronic structure calculations suggest that the PT Asp(15)-COOH + H(2)O + [3Fe-4S](0) → Asp(15)-COO(-) + H(2)O + [3Fe-4S](0) H(+) is concerted, and no stable intermediate hydronium ion (H(3)O(+)) is expected. The free energy difference of 11.7 kcal/mol for the forward reaction is in good agreement with the experimental value (13.3 kcal/mol). For the reverse reaction (Asp(15)-COO(-) + H(2)O + [3Fe-4S](0)H(+) → Asp(15)-COOH + H(2)O + [3Fe-4S](0)), a larger barrier than for the forward reaction is correctly predicted, but it is quantitatively overestimated (23.1 kcal/mol from simulations versus 14.1 from experiment). Possible reasons for this discrepancy are discussed. Compared with the water-assisted process (ΔE ≈ 10 kcal/mol), water-unassisted proton transfer yields a considerably higher barrier of ΔE ≈ 35 kcal/mol.  相似文献   

18.
Determining the mechanisms of flux through protein channels requires a combination of structural data, permeability measurement, and molecular dynamics (MD) simulations. To further clarify the mechanism of flux through aquaporin 1 (AQP1), osmotic p(f) (cm(3)/s/pore) and diffusion p(d) (cm(3)/s/pore) permeability coefficients per pore of H(2)O and D(2)O in AQP1 were calculated using MD simulations. We then compared the simulation results with experimental measurements of the osmotic AQP1 permeabilities of H(2)O and D(2)O. In this manner we evaluated the ability of MD simulations to predict actual flux results. For the MD simulations, the force field parameters of the D(2)O model were reparameterized from the TIP3P water model to reproduce the experimentally observed difference in the bulk self diffusion constants of H(2)O vs. D(2)O. Two MD systems (one for each solvent) were constructed, each containing explicit palmitoyl-oleoyl-phosphatidyl-ethanolamine (POPE) phospholipid molecules, solvent, and AQP1. It was found that the calculated value of p(f) for D(2)O is approximately 15% smaller than for H(2)O. Bovine AQP1 was reconstituted into palmitoyl-oleoyl-phosphatidylcholine (POPC) liposomes, and it was found that the measured macroscopic osmotic permeability coefficient P(f) (cm/s) of D(2)O is approximately 21% lower than for H(2)O. The combined computational and experimental results suggest that deuterium oxide permeability through AQP1 is similar to that of water. The slightly lower observed osmotic permeability of D(2)O compared to H(2)O in AQP1 is most likely due to the lower self diffusion constant of D(2)O.  相似文献   

19.
A conformational study of the double-stranded decanucleotide d(GCCG*G*ATCGC).d(GCGATCCGGC), with the G* guanines chelating a cis-Pt(NH3)2 moiety, has been accomplished using 1H and 31P NMR, and molecular mechanics. Correlation of the NMR data with molecular models has disclosed an equilibrium between several kinked conformations and has ruled out an unkinked structure. The deformation is localized at the CG*G*.CCG trinucleotide where the helix is kinked by approximately 60 degrees towards the major groove and unwound by 12-19 degrees. The models revealed an unexpected mobility of the cytosine complementary to the 5'-G*. This cytosine can stack on either branch of the kinked complementary strand. The energy barrier between the two positions has been calculated to be less than or equal to 12 kJ/mol. The NMR data are in support of rapid flip-flopping of this cytosine. An explanation for the strong downfield shift observed in the 31P resonance of the G*pG* phosphate is given.  相似文献   

20.
The role of water molecules on the protein-ligand interface during macromolecular association has been determined. The free energy of association of insulin has been calculated by the methods of molecular mechanics and continual electrostatics (Poisson-Boltzmann model). The previously developed scheme of the decomposition of association free energy onto contributions from individual interactions has been used to calculate intermolecular interactions, the solvation free energy, and the entropies of the process of macromolecular association. An analysis of the calculated oscillation spectra indicated that the presence of water molecules on the protein-protein interface promotes an increase in the contribution of vibration entropy to the free energy of association due to the enhancement of the flexibility of the complex. It was shown that water molecules involved in the formation of protein-water-ligand hydrogen bond network change the balance of forces in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号