首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
I Goljer  J M Withka  J Y Kao  P H Bolton 《Biochemistry》1992,31(46):11614-11619
The presence of an abasic site in duplex DNA lowers the thermodynamic stability, as monitored by the optical melting temperature, and decreases the rate of imino proton exchange with water, by about an order of magnitude, as monitored by direct measurement of both the exchange lifetimes and the imino proton T1S. The exchange lifetimes of the imino protons with water as a function of base catalyst concentration were analyzed to determine the origin of the effect of the abasic site on imino exchange lifetimes. Analysis of the results showed that the helix opening rate is not significantly changed by the presence of an abasic site. The differences in exchange lifetimes are attributed to a faster helix closing rate in the presence of an abasic site. The faster rate of helix closing may be an important contribution to the stability of abasic sites in duplex DNA to base-catalyzed elimination reaction. It is noted that duplex DNAs containing analogues of the aldehydic abasic site apparently do not exhibit these exchange lifetime effects.  相似文献   

2.
Abasic sites are common DNA lesions resulting from spontaneous depurination and excision of damaged nucleobases by DNA repair enzymes. However, the influence of the local sequence context on the structure of the abasic site and ultimately, its recognition and repair, remains elusive. In the present study, duplex DNAs with three different bases (G, C or T) opposite an abasic site have been synthesized in the same sequence context (5′-CCA AAG6 XA8C CGG G-3′, where X denotes the abasic site) and characterized by 2D NMR spectroscopy. Studies on a duplex DNA with an A opposite the abasic site in the same sequence has recently been reported [Chen,J., Dupradeau,F.-Y., Case,D.A., Turner,C.J. and Stubbe,J. (2007) Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4′-oxidized abasic sites. Biochemistry, 46, 3096–3107]. Molecular modeling based on NMR-derived distance and dihedral angle restraints and molecular dynamics calculations have been applied to determine structural models and conformational flexibility of each duplex. The results indicate that all four duplexes adopt an overall B-form conformation with each unpaired base stacked between adjacent bases intrahelically. The conformation around the abasic site is more perturbed when the base opposite to the lesion is a pyrimidine (C or T) than a purine (G or A). In both the former cases, the neighboring base pairs (G6-C21 and A8-T19) are closer to each other than those in B-form DNA. Molecular dynamics simulations reveal that transient H-bond interactions between the unpaired pyrimidine (C20 or T20) and the base 3′ to the abasic site play an important role in perturbing the local conformation. These results provide structural insight into the dynamics of abasic sites that are intrinsically modulated by the bases opposite the abasic site.  相似文献   

3.
Translesional DNA synthesis past abasic sites proceeds with the preferential incorporation of dAMP opposite the lesion and, depending on the sequence context, one or two base deletions. High-resolution NMR spectroscopy and molecular dynamics simulations were used to determine the three-dimensional structure of a DNA heteroduplex containing a synthetic abasic site (tetrahydrofuran) residue positioned in a sequence that promotes one base deletions. Analysis of NMR spectra indicates that the stem region of the duplex adopts a right-handed helical structure and the glycosidic torsion angle is in anti orientation for all residues. NOE interactions establish Watson-Crick alignments for all canonical base pairs of the duplex. Measurement of distance interactions at the lesion site shows the abasic residue excluded from the helix. Restrained molecular dynamics simulations generated three-dimensional models in excellent agreement with the spectroscopic data. These structures show a regular duplex region and a slight bend at the lesion site. The tetrahydrofuran residue extrudes from the helix and is highly flexible. The model reported here, in conjunction with a previous study performed on abasic sites, explains the structural bias of one-base deletion mutations.  相似文献   

4.
Redmond Red, a fluoropore containing a redox-active phenoxazine core, has been explored as a new electrochemical probe for the detection of abasic sites in double-stranded DNA. The electrochemical behavior of Redmond Red-modified DNA at gold surfaces exhibits stable, quasi-reversible voltammetry with a midpoint potential centered around -50 mV versus NHE. Importantly, with Redmond Red positioned opposite an abasic site within the DNA duplex, the electrochemical response is significantly enhanced compared to Redmond Red positioned across from a base. Redmond Red, reporting only if well-stacked in the duplex, represents a sensitive probe to detect abasic sites electrochemically in a DNA-mediated reaction.  相似文献   

5.
We use internal coordinate molecular mechanics calculations to study the impact of abasic sites on the conformation and the mechanics of the DNA double helix. Abasic sites, which are common mutagenic lesions, are shown to locally modify both the groove geometry and the curvature of DNA in a sequence dependent manner. By controlled twisting and bending, it is also shown that these lesions modify the deformability of the duplex, generally increasing its flexibility, but again to an extent which depends on the nature of the abasic site and on the surrounding base sequence. Both the conformational and mechanical influence of this type of DNA damage may be significant for recognition and repair mechanisms.  相似文献   

6.
Abstract

We use internal coordinate molecular mechanics calculations to study the impact of abasic sites on the conformation and the mechanics of the DNA double helix. Abasic sites, which are common mutagenic lesions, are shown to locally modify both the groove geometry and the curvature of DNA in a sequence dependent manner. By controlled twisting and bending, it is also shown that these lesions modify the deformability of the duplex, generally increasing its flexibility, but again to an extent which depends on the nature of the abasic site and on the surrounding base sequence. Both the conformational and mechanical influence of this type of DNA damage may be significant for recognition and repair mechanisms.  相似文献   

7.
The DNA duplexes shown below, with D indicating deoxyribose aldehyde absic sites and numbering from 5' to 3', have been investigated by NMR. The 31P and 31P-1H correlation data indicate [formula: see text] that the backbones of these duplex DNAs are regular. One- and two-dimensional 1H NMR data indicate that the duplexes are right-handed and B-form. Conformational changes due to the presence of the abasic site extend to the two base pairs adjacent to the lesion site with the local conformation of the DNA being dependent on whether the abasic site is in the alpha or beta configuration. The aromatic base of residue A17 in the position opposite the abasic site is predominantly stacked in the helix as is G17 in the analogous sample. Imino lifetimes of the AT base pairs are much longer in samples with an abasic site than in those containing a Watson-Crick base pair. The conformational and dynamical properties of the duplex DNAs containing the naturally occurring aldehyde abasic site are different from those of duplex DNAs containing a variety of analogues of the abasic site.  相似文献   

8.
Naturally occurring abasic sites in DNA exist as an equilibrium mixture of the aldehyde, the hydrated aldehyde, and the hemiacetal forms (dominant). The influence of the configuration of the C1' hydroxyl group of the hemiacetal form on duplex structure and abasic site repair has been examined using novel carbocyclic analogues. Both the alpha- and beta-forms of this novel abasic site were introduced into oligomeric DNA using the standard DMT-phosphoramidite approach in an automated solid-phase synthesizer. Solution structures of the d(CGTACXCATGC).d(GCATGAGTACG) duplex (where X is the alpha- or beta-anomer of the carbocyclic abasic site analogue) were determined by NMR spectroscopy and restrained molecular dynamics simulations. The structures were only minimally perturbed by the presence of either anomer of the abasic site. All residues adopted an anti conformation, and Watson-Crick alignments were observed on all base pairs of the duplexes. At the lesion site, the abasic residues and their partner adenines showed increased dynamic behavior but adopted intrahelical positions in the final refined structures. Incision of duplexes having the alpha- or beta-anomer of the carbocyclic abasic site by human AP endonuclease showed that the enzyme recognizes both configurations of the lesion and nicks the DNA backbone with similar efficiency. Our results challenge the suggestion that Ape1 is stereoselective and imply a plasticity at the active site of the enzyme for accommodating either anomer of the lesion.  相似文献   

9.
Mutagenesis at abasic sites was investigated in E.coli and simian kidney (COS) cells using a duplex shuttle vector containing synthetic analogs of deoxyribose on the phosphodiester backbone. Lesions were positioned on opposite strands of the vector. When the tetrahydrofuranyl analog was used as the abasic site, AT or TA pairs (65-80%) were introduced at the site of the bistrand lesion. Mutagenesis occurred in the absence of SOS induction. Single base deletions (> 80%) dominated the mutational spectra for propanyl and ethanyl analogs of abasic sites lacking a ring structure. For all abasic site analogs, a small proportion of G/C and C/G pairs (6-10%) were observed. dAMP was incorporated predominantly opposite tetrahydrofuranyl sites positioned in the single strand region of a gapped duplex vector. We conclude from these studies that abasic sites positioned in a bistrand configuration are highly mutagenic in E.coli and COS cells. Repair DNA synthesis may be involved in this process.  相似文献   

10.
A 13 mers abasic oligonucleotide was synthetized. It was therefore possible to compare thermal stability and reactivity of duplex oligonucleotides either with an apurinic/apyrimidinic site or without any lesion. An important decrease in the melting temperature appeared for duplexes with an abasic site. The chemical reaction of these modified oligonucleotides with the intercalating agent 9-aminoellipticine was studied by gel electrophoresis and by fluorescence. The formation of a Schiff base between 9-aminoellipticine and abasic sites was rapid and complete with duplexes at 11 degrees C. Schiff base related fluorescence and beta-elimination cleavage were more important with the apyrimidinic sites than with the apurinic ones. When compared to previous results obtained with the model d(TprpT) some unexpected behaviours appeared with longer and duplex oligonucleotides. For instance only partial beta-elimination cleavage was observed. It is likely that stacking parameters in the double helix play a great role in the studied reaction.  相似文献   

11.
During DNA synthesis, base stacking and Watson-Crick (WC) hydrogen bonding increase the stability of nascent base pairs when they are in a ternary complex. To evaluate the contribution of base stacking to the incorporation efficiency of dNTPs when a DNA polymerase encounters an abasic site, we varied the penultimate base pairs (PBs) adjacent to the abasic site using all 16 possible combinations. We then determined pre-steady-state kinetic parameters with an RB69 DNA polymerase variant and solved nine structures of the corresponding ternary complexes. The efficiency of incorporation for incoming dNTPs opposite an abasic site varied between 2- and 210-fold depending on the identity of the PB. We propose that the A rule can be extended to encompass the fact that DNA polymerase can bypass dA/abasic sites more efficiently than other dN/abasic sites. Crystal structures of the ternary complexes show that the surface of the incoming base was stacked against the PB's interface and that the kinetic parameters for dNMP incorporation were consistent with specific features of base stacking, such as surface area and partial charge-charge interactions between the incoming base and the PB. Without a templating nucleotide residue, an incoming dNTP has no base with which it can hydrogen bond and cannot be desolvated, so that these surrounding water molecules become ordered and remain on the PB's surface in the ternary complex. When these water molecules are on top of a hydrophobic patch on the PB, they destabilize the ternary complex, and the incorporation efficiency of incoming dNTPs is reduced.  相似文献   

12.
The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms.  相似文献   

13.
The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12–35°C) and KCl concentration (0.15–1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∼8 kJ mol−1 decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∼2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes.  相似文献   

14.
Clustered DNA damages are defined as two or more closely located DNA damage lesions that may be present within a few helical turns of the DNA double strand. These damages are potential signatures of ionizing radiation and are often found to be repair resistant. Types of damaged lesions frequently found inside clustered DNA damage sites include oxidized bases, abasic sites, nucleotide dimers, strand breaks or their complex combinations. In this study, we used a bistranded two-lesion abasic cluster DNA damage model to access the repair process of DNA in condensate form.Oligomer DNA duplexes (47 bp) were designed to have two deoxyuridine in the middle of the sequences, three bases apart in opposite strands. The deoxyuridine residues were converted into abasic sites by treatment with UDG enzyme creating an abasic clustered damage site in a precise position in each of the single strand of the DNA duplex. This oligomer duplex having compatible cohesive ends was ligated to pUC19 plasmid, linearized with HindIII restriction endonuclease. The plasmid–oligomer conjugate was transformed into condensates by treating them with spermidine. The efficiency of strand cleavage action of ApeI enzyme on the abasic sites was determined by denaturing PAGE after timed incubation of the oligomer duplex and the oligomer–plasmid conjugate in presence and absence of spermidine. The efficiency of double strand breaks was determined similarly by native PAGE. Quantitative gel analysis revealed that rate of abasic site cleavage is reduced in the DNA condensates as compared to the oligomer DNA duplex or the linear ligated oligomer–plasmid conjugates. Generation of double strand break is significantly reduced also, suggesting that their creation is not proportionate to the number of abasic sites cleaved in the condensate model. All these suggest that the ApeI enzyme have difficulty to access the abasic sites located deep into the condensates leading to repair refractivity of the damages. In addition, we found that presence of a polyamine such as spermidine has no notable effect in the incision activity of ApeI enzyme in linear oligomer DNA duplexes in our experimental concentration.  相似文献   

15.
An abasic site in DNA creates a strong block to DNA polymerase and is a mutagenic base lesion. In this study, we present structural and dynamic properties of duplex oligodeoxynucleotides containing G, C and T opposite a model abasic site studied by one and two-dimensional nuclear magnetic resonance spectroscopy. We have demonstrated that A opposite the abasic site was positioned within the helix as if paired with T, and that the A residue melted co-operatively with the surrounding helix. We report here that G opposite the abasic site is also observed to be predominantly intrahelical in a normal anti conformation at low temperature. With increasing temperature, the mobility of the G residue increases rapidly and apparently is in a "melted state" well before denaturation of the helix. At low temperature, two species are found for T opposite the abasic site; one, intrahelical, one extrahelical. These species are in slow exchange with one another on a proton nuclear magnetic resonance time-scale. The two species then move into fast exchange with increasing temperature and the proportion of the extra-helical form increases. When C is positioned opposite the abasic site, both the C residue and the abasic sugar are extrahelical, the helix collapses, and the adjacent G.C base-pairs stack over one another. On the basis of these observations, we propose a model that explains why the abasic site acts to block DNA replication. Further, we suggest an explanation for the observed polymerase preference for base selection at abasic sites.  相似文献   

16.
The natural product leinamycin has been found to produce abasic sites in duplex DNA through the hydrolysis of the glycosidic bond of guanine residues modified by this drug. In the present study, using a synthetic oligonucleotide duplex, we demonstrate spontaneous DNA strand cleavage at leinamycin-induced abasic sites through a β-elimination reaction. However, methoxyamine modification of leinamycin-induced abasic sites was found to be refractory to the spontaneous β-elimination reaction. Furthermore, this complex was even resistant to the δ-elimination reaction with hot piperidine treatment. Bleomycin and methyl methanesulfonate also induced strand cleavage in a synthetic oligonucleotide duplex even without thermal treatment. However, methoxyamine has a negligible effect on DNA strand cleavage induced by both drugs, suggesting that the mechanism of DNA cleavage induced by leinamycin might be different from those induced by bleomycin or methyl methanesulfonate. In this study, we also assessed the cytotoxicity of leinamycin against a collection of mammalian cell lines defective in various repair pathways. The mammalian cell line defective in the nucleotide excision repair (NER) or base excision repair (BER) pathways was about 3 to 5 times more sensitive to leinamycin as compared to the parental cell line. In contrast, the radiosensitive mutant xrs-5 cell line deficient in V(D)J recombination showed similar sensitivity towards leinamycin compared to the parental cell line. Collectively, our findings suggest that both NER and BER pathways play an important role in the repair of DNA damage caused by leinamycin.  相似文献   

17.
The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12–35°C) and KCl concentration (0.15–1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∼8 kJ mol−1 decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∼2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes.  相似文献   

18.
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA–protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.  相似文献   

19.
20.
8-Oxoguanine (8-oxoG) is a major mutagenic DNA base damage corrected by the base excision repair (BER) pathway, which is initiated by lesion specific DNA glycosylases. The human DNA glycosylase hOgg1 catalyses excision of 8-oxoG followed by strand incision 3' to the abasic site if cytosine is positioned in the complementary strand. Unlike most bifunctional glycosylases, hOgg1 uncouples base removal and strand cleavage. This paper addresses the significance of product inhibition and magnesium for the non-concerted action of hOgg1 activities. The enzymatic activities of hOgg1 were analysed on duplex DNA containing a single 8-oxoG or abasic site opposite cytosine. AP-lyase cleavage of abasic sites was inhibited in the presence of free 8-oxoG, indicating that the product of base excision inhibits the subsequent strand incision step. Assays with DNA containing 8-oxoG showed that free 8-oxoG also inhibited the glycosylase activity. This result suggests that the free 8-oxoG base may retain in the recognition site following N-glycosylic cleavage, implying that product inhibition contribute to uncoupling the activities of hOgg1. Magnesium reduced the efficiency of base excision and strand incision on DNA containing 8-oxoG under single turnover conditions; however, the reduction was more pronounced for the AP-lyase activity. Furthermore, Shiff-base formation between hOgg1 and 8-oxoG containing DNA was abrogated in the presence of magnesium. These results suggest that hOgg1 mainly operates as a monofunctional glycosylase under physiological concentrations of magnesium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号