首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial NadM-Nudix is a bifunctional enzyme containing a nicotinamide mononucleotide (NMN) adenylyltransferase and an ADP-ribose (ADPR) pyrophosphatase domain. While most members of this enzyme family, such as that from a model cyanobacterium Synechocystis sp., are involved primarily in nicotinamide adenine dinucleotide (NAD) salvage/recycling pathways, its close homolog in a category-A biodefense pathogen, Francisella tularensis, likely plays a central role in a recently discovered novel pathway of NAD de novo synthesis. The crystal structures of NadM-Nudix from both species, including their complexes with various ligands and catalytic metal ions, revealed detailed configurations of the substrate binding and catalytic sites in both domains. The structure of the N-terminal NadM domain may be exploited for designing new antitularemia therapeutics. The ADPR binding site in the C-terminal Nudix domain is substantially different from that of Escherichia coli ADPR pyrophosphatase, and is more similar to human NUDT9. The latter observation provided new insights into the ligand binding mode of ADPR-gated Ca2+ channel TRPM2.  相似文献   

2.
D Chen  K T Yue  C Martin  K W Rhee  D Sloan  R Callender 《Biochemistry》1987,26(15):4776-4784
We report the Raman spectra of reduced and oxidized nicotinamide adenine dinucleotide (NADH and NAD+, respectively) and adenosine 5'-diphosphate ribose (ADPR) when bound to the coenzyme site of liver alcohol dehydrogenase (LADH). The bound NADH spectrum is calculated by taking the classical Raman difference spectrum of the binary complex, LADH/NADH, with that of LADH. We have investigated how the bound NADH spectrum is affected when the ternary complexes with inhibitors are formed with dimethyl sulfoxide (Me2SO) or isobutyramide (IBA), i.e., LADH/NADH/Me2SO or LADH/NADH/IBA. Similarly, the difference spectra of LADH/NAD+/pyrazole or LADH/ADPR with LADH are calculated. The magnitude of these difference spectra is on the order of a few percent of the protein Raman spectrum. We report and discuss the experimental configuration and control procedures we use in reliably calculating such small difference signals. These sensitive difference techniques could be applied to a large number of problems where the classical Raman spectrum of a "small" molecule, like adenine, bound to the active site of a protein is of interest. The spectrum of bound ADPR allows an assignment of the bands of the bound NADH and NAD+ spectra to normal coordinates located primarily on either the nicotinamide or the adenine moiety. By comparing the spectra of the bound coenzymes with model compound data and through the use of deuterated compounds, we confirm and characterize how the adenine moiety is involved in coenzyme binding and discuss the validity of the suggestion that the adenine ring is protonated upon binding. The nicotinamide moiety of NADH shows significant molecular changes upon binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Readily synthesized nicotinamide adenine dinucleotide (NAD(+)) analogues have been used to investigate aspects of the cyclization of NAD(+) to cyclic adenosine 5'-O-diphosphate ribose (cADPR) catalyzed by the enzyme adenosine 5'-O-diphosphate (ADP) ribosyl cyclase and to produce the first potent inhibitors of this enzyme. In all cases, inhibition of Aplysia californica cyclase by various substrate analogues was found to be competitive while inhibition by nicotinamide exhibited mixed-behavior characteristics. Nicotinamide hypoxanthine dinucleotide (NHD(+)), nicotinamide guanine dinucleotide (NGD(+)), C1'-m-benzamide adenine dinucleotide (Bp(2)A), and C1'-m-benzamide nicotinamide dinucleotide (Bp(2)N) were found to be nanomolar potency inhibitors with inhibition constants of 70, 143, 189, and 201 nM, respectively. However, NHD(+) and NGD(+) are also known substrates and are slowly converted to cyclic products, thus preventing their further use as inhibitors. The symmetrical bis-nucleotides, bis-adenine dinucleotide (Ap(2)A), bis-hypoxanthine dinucleotide (Hp(2)H), and bis-nicotinamide dinucleotide (Np(2)N), exhibited micromolar competitive inhibition, with Ap(2)A displaying the greatest affinity for the enzyme. 2',3'-Di-O-acetyl nicotinamide adenine dinucleotide (AcONAD(+)) was not a substrate for the A. californica cyclase but also displayed some inhibition at a micromolar level. Finally, inhibition of the cyclase by adenosine 5'-O-diphosphate ribose (ADPR) and inosine 5'-O-diphosphate ribose (IDPR) was observed at millimolar concentration. The nicotinamide aromatic ring appears to be the optimal motif required for enzymatic recognition, while modifications of the 2'- and 3'-hydroxyls of the nicotinamide ribose seem to hamper binding to the enzyme. Stabilizing enzyme/inhibitor interactions and the inability of the enzyme to release unprocessed material are both considered to explain nanomolar inhibition. Recognition of inhibitors by other ADP ribosyl cyclases has also been investigated, and this study now provides the first potent nonhydrolyzable sea urchin ADP ribosyl cyclase and cADPR hydrolase inhibitor Bp(2)A, with inhibition observed at the micromolar and nanomolar level, respectively. The benzamide derivatives did not inhibit CD38 cyclase or hydrolase activity when NGD(+) was used as substrate. These results emphasize the difference between CD38 and other enzymes in which the cADPR cyclase activity predominates.  相似文献   

4.
The two species of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) from Pseudomonas multivorans were resolved from extracts of gluconate-grown bacteria and purified to homogeneity. Each enzyme comprised between 0.1 and 0.2% of the total cellular protein. Separation of the two enzymes, one which is specific for nicotinamide adenine dinucleotide phosphate and the other which is active with nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate was facilitated by the marked difference in their respective isoelectric points, which were at pH 5.0 and 6.9. Comparison of the subunit compositions of the two enzymes indicated that they do not share common peptide chains. The enzyme active with nicotinamide adenine dinucleotide was composed of two subunits of about 40,000 molecular weight, and the nicotinamide adenine dinucleotide phosphate-specific enzyme was composed of two subunits of about 60,000 molecular weight. Immunological studies indicated that the two enzymes do not share common antigenic determinants. Reduced nicotinamide adenine dinucleotide phosphate strongly inhibited the 6-phosphogluconate dehydrogenase active with nicotinamide adenine dinucleotide by decreasing its affinity for 6-phosphogluconate. Guanosine-5'-triphosphate had a similar influence on the nicotinamide adenine dinucleotide phosphate-specific 6-phosphogluconate dehydrogenase. These results in conjunction with other data indicating that reduced nicotinamide adenine dinucleotide phosphate stimulates the conversion of 6-phosphogluconate to pyruvate by crude bacterial extracts suggest that in P. multivorans, the relative distribution of 6-phosphogluconate into the pentose phosphate and Entner-Doudoroff pathways might be determined by the intracellular concentrations of reduced nicotinamide adenine dinucleotide phosphate and purine nucleotides.  相似文献   

5.
When Escherichia coli K-12 was grown on gamma-aminobutyrate, a second succinic semialdehyde dehydrogenase, dependent upon oxidized nicotinamide adenine dinucleotide or oxidized nicotinamide adenine dinucleotide phosphate and distinct from that induced by gamma-aminobutyrate, was gratuitously induced by succinic semialdehyde.  相似文献   

6.
Li, Lan-Fun (Western Reserve University School of Medicine, Cleveland, Ohio), Lars Ljungdahl, and Harland G. Wood. Properties of nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum. J. Bacteriol. 92: 405-412. 1966.-A nicotinamide adenine dinucleotide phosphate (NADP)-dependent formate dehydrogenase has been isolated from C. thermoaceticum. The enzyme is very sensitive to oxygen and requires sulfhydryl compounds for activity. The apparent K(m) at 50 C and pH 7.0 for NADP is 5.9 x 10(-5)m and for formate, 2.2 x 10(-4)m. The enzyme is most active at about 60 C and at pH values between 7.0 and 9.0. The enzyme catalyzes an exchange between C(14)O(2) and formate, which requires NADP, but net synthesis of formate from CO(2) and reduced nicotinamide adenine dinucleotide phosphate could not be demonstrated. The reaction does not involve ferredoxin.  相似文献   

7.
The fluorescence of a fermentation culture was studied for its application as an estimator of biomass concentration. The measurement was obtained by irradiating the culture with ultraviolet light (366 nm) through a glass window and detecting fluorescent light at the window surface at 460 nm. It was estimated that over one-half of the fluorescent material was intercellular reduced nicotinamide adenine dinucleotide, with the remainder being reduced nicotinamide adenine dinucleotide phosphate and other unidentified intercellular and extracellular fluorophores. The culture fluorescence was found to be a function of biomass concentration, together with environmental factors, which presumably act at the cellular metabolic level to modify intercellular reduced nicotinamide adenine dinucleotide pools (e.g., dissolved oxygen tension, energy substrate concentration, and inhibitors). When these environmental conditions were controlled, a linear relationship was obtained between the log of the biomass concentration and the log of the fluorescence. Under these conditions, this relationship has considerable potential as a method to provide real-time biomass concentration estimates for process control and optimization since the fluorescence data is obtained on line. When environmental conditions are variable, the fluorescence data may be a sensitive index of overall culture activity because of its dependence on intercellular reduced nicotinamide adenine dinucleotide reserves and metabolic rates. This index may provide information about the period of maximum specific productivity for a specific microbial product.  相似文献   

8.
Role of molybdenum in nitrate reduction by chlorella   总被引:11,自引:4,他引:7       下载免费PDF全文
Molybdenum is absolutely required for the nitrate-reducing activity of the nicotinamide adenine dinucleotide nitrate reductase complex isolated from Chlorella fusca. The whole enzyme nicotinamide adenine dinucleotide nitrate reductase is formed by cells grown in the absence of added molybdate, but only its first activity (nicotinamide adenine dinucleotide diaphorase) is functional. The second activity of the complex, which subsequently participates also in the enzymatic transfer of electrons from nicotinamide adenine dinucleotide to nitrate (FNH2-nitrate reductase), depends on the presence of molybdenum. Neither molybdate nor nitrate is required for nitrate reductase synthesis de novo, but ammonia acts as a nutritional repressor of the complete enzyme complex. Under conditions which exclude de novo synthesis of nitrate reductase, the addition of molybdate to molybdenum-deficient cells clearly increases the activity level of this enzyme, thus suggesting in vivo incorporation of the trace metal into the pre-existing inactive apoenzyme.  相似文献   

9.
ADP-ribosyl cyclases are structurally conserved enzymes that are best known for catalyzing the production of the calcium-mobilizing metabolite, cyclic adenosine diphosphate ribose (cADPR), from nicotinamide adenine dinucleotide (NAD(+)). However, these enzymes also produce adenosine diphosphate ribose (ADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP(+)), both of which have been shown to modulate calcium mobilization in vitro. We have now characterized a new member of the cyclase family from Schistosoma mansoni, a member of the Platyhelminthes phylum. We show that the novel NAD(P)(+) catabolizing enzyme (NACE) expressed by schistosomes is structurally most closely related to the cyclases cloned from Aplysia but also shows significant homology with the mammalian cyclases, CD38 and CD157. NACE expression is developmentally regulated in schistosomes, and the GPI-anchored protein is localized to the outer tegument of the adult schistosome. Importantly, NACE, like all members of the cyclase family, is a multifunctional enzyme and catalyzes NAD(+) glycohydrolase and base-exchange reactions to produce ADPR and NAADP(+). However, despite being competent to generate a cyclic product from NGD(+), a nonphysiologic surrogate substrate, NACE is so far the only enzyme in the cyclase family that is unable to produce significant amounts of cADPR (<0.02% of reaction products) using NAD(+) as the substrate. This suggests that the other calcium-mobilizing metabolites produced by NACE may be more important for calcium signaling in schistosomes. Alternatively, the function of NACE may be to catabolize extracellular NAD(+) to prevent its use by host enzymes that utilize this source of NAD(+) to facilitate immune responses.  相似文献   

10.
The melastatin-related transient receptor potential channel TRPM2 is a plasma membrane Ca2+-permeable cation channel that is activated by intracellular adenosine diphosphoribose (ADPR) binding to the channel's enzymatic Nudix domain. Channel activity is also seen with nicotinamide dinucleotide (NAD+) and hydrogen peroxide (H2O2), but their mechanisms of action remain unknown. Here, we identify cyclic adenosine diphosphoribose (cADPR) as an agonist of TRPM2 with dual activity: at concentrations above 100 microM, cADPR can gate the channel by itself, whereas lower concentrations of 10 microM have a potentiating effect that enables ADPR to gate the channel at nanomolar concentrations. ADPR's breakdown product adenosine monophosphate (AMP) specifically inhibits ADPR, but not cADPR-mediated gating of TRPM2, whereas the cADPR antagonist 8-Br-cADPR exhibits the reverse block specificity. Our results establish TRPM2 as a coincidence detector for ADPR and cADPR signaling and provide a functional context for cADPR as a second messenger for Ca2+ influx.  相似文献   

11.
The Pseudomonas multivorans glucose-6-phosphate dehydrogenase (EC 1.1.1.49) active with nicotinamide adenine dinucleotide, which is inhibitable by adenosine-5'-triphosphate, was purified approximately 1,000-fold from extracts of glucose-grown bacteria, and characterized with respect to subunit composition, response to different inhibitory ligands, and certain other properties. The enzyme was found to be an oligomer composed of four subunits of about 60,000 molecular weight. Reduced nicotinamide adenine dinucleotide phosphate, but not reduced nicotinamide adenine dinucleotide, was found to be a potent inhibitor of its activity. The range of concentrations of reduced nicotinamide adenine dinucleotide phosphate over which inhibition occurred was about 100-fold lower than that for adenosine-5'-triphosphate. The data suggest that reduced nicotinamide adenine dinucleotide phosphate may play an important role in regulation of hexose phosphate metabolism in P. multivorans. Antisera prepared against the purified enzyme strongly inhibited its activity, but failed to inhibit the activity of the nicotinamide adenine dinucleotide phosphate-specific glucose-6-phosphate dehydrogenase which is also present in extracts of this bacterium. Immunodiffusion experiments confirmed the results of the enzyme inhibition studies, and failed to support the idea that the two glucose-6-phosphate dehydrogenase species from P. multivorans represent different oligomeric forms of the same protein.  相似文献   

12.
The first total chemical synthesis of nicotinamide adenine dinucleotide phosphate (beta-NADP, 2) as a single isomer was achieved. This was subsequently converted into the important second messenger nicotinic acid adenine dinucleotide phosphate (p-NAADP) 1 and the identity of this material confirmed by biological evaluation. This flexible synthetic route offers new opportunities for the generation of NAADP 1 analogues that cannot be generated directly from NADP 2 or mainly enzymatic methods.  相似文献   

13.
14.
The first total chemical synthesis of nicotinamide adenine dinucleotide phosphate (β-NADP, 2) as a single isomer was achieved. This was subsequently converted into the important second messenger nicotinic acid adenine dinucleotide phosphate (β-NAADP) 1 and the identity of this material confirmed by biological evaluation. This flexible synthetic route offers new opportunities for the generation of NAADP 1 analogues that cannot be generated directly from NADP 2 or mainly enzymatic methods.  相似文献   

15.
The pH dependence of the 13C chemical shifts for nicotinamide adenine dinucleotide (NAD+), thionicotinamide adenine dinucleotide (TNAD+), pyridine adenine dinucleotide (PyrAD+), N-methyl-nicotinamide adenine dinucleotide (N-Me-NAD+), acetylpyridine adenine dinucleotide (AcPyAD+), nicotinamide hypoxanthine dinucleotide (NHD+), and nicotinamide adenine dinucleotide phosphate (NADP+) are reported. In these analogs the 13C chemical shifts of the pyridinium moiety reflect the pKa of the opposing purine base, while the 13C chemical shift dependence on pD for the pyridinium carbons of nicotinamide mononucleotide (NMN+) and adenosine monophosphate (AMP), 1,4-dihydronicotinamide adenine dinucleotide (NADH), 1,4-dihydronicotinamide adenine dinucleotide phosphate (NADPH), and nicotinic acid adenine dinucleotide (N(a)AD+) are not influenced by the adenine ring in the pD range tested. Through the use of 13C-labeled NAD+, the source of the pH dependence of the 13C chemical shifts was shown to be intramolecular in origin. However, serious doubt is cast on the utility of employing the pD dependence of chemical shift data to determine the nature of solution conformers or their relative populations.  相似文献   

16.
Nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase was extracted from etiolated pea (Pisum sativum L.) seedlings and was purified 65-fold. The purified enzyme exhibits one predominant protein band by polyacrylamide gel electrophoresis, which corresponds to the dehydrogenase activity as measured by the nitro blue tetrazolium technique. The reaction is readily reversible, the pH optima for the forward (nicotinamide adenine dinucleotide phosphate reduction) and reverse reactions being 8.4 and 6.0, respectively. The enzyme has different cofactor and inhibitor characteristics in the two directions. Manganese ions can be used as a cofactor for the reaction in each direction but magnesium ions only act as a cofactor in the forward reaction. Zinc ions, and to a lesser extent calcium ions, inhibit the enzyme at low concentrations when magnesium but not manganese is the metal activator. It is suggested that there is a fundamental difference between magnesium and manganese in the activation of the enzyme. The enzyme shows normal kinetics and the Michaelis contant for each substrate was determined. The inhibition by nucleotides, nucleosides, reaction products, and related compounds was studied. The enzyme shows a linear response to the mole fraction of reduced nicotinamide adenine dinucleotide phosphate when total nicotinamide adenine dinucleotide phosphate (nicotinamide adenine dinucleotide phosphate plus reduced nicotinamide adenine dinucleotide phosphate) is kept constant. Isocitrate in the presence of divalent metal ions will protect the enzyme from inactivation by p-chloromercuribenzoate. Protection is also afforded by manganese ions alone but not by magnesium ions alone There is a concerted inhibition of the enzyme by oxalacetate and glyoxylate.  相似文献   

17.
Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) are of universal occurrence in living organisms and play a central role in coupling oxidative with reductive reactions. However, the evidence that the origin and early evolution of life occurred at high temperatures (>95°C) is now strong, and at these temperatures some modern metabolites, including both the reduced and oxidized forms of these coenzymes, are unstable. We believe there is good evidence that indicates that in the most primitive organisms nonhem iron proteins carried out many or all of the functions of NAD/P(H). This has important implications for the way in which investigations of archaebacterial metabolism are conducted.Abbreviations NAD/P(H)a Oxidised and reduced forms of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate  相似文献   

18.
Nicotinamide adenine dinucleotide phosphate (reduced form) is formed more rapidly after the addition of thiosulfate to suspensions of intact Thiobacillus neapolitanus in the absence of CO(2) than nicotinamide adenine dinucleotide (reduced form). Measurement of acid-stable metabolites shows this phenomenon to be the result of rapid reoxidation of nicotinamide adenine dinucleotide (reduced form) by 3-phosphoglyceric acid and other oxidized intermediates, which are converted to triose and hexose phosphates, and that, in reality, the rate of nicotinamide adenine dinucleotide (oxidized form) reduction exceeds that of nicotinamide adenine dinucleotide phosphate (oxidized form) by approximately 4.5-fold. The overall rate of pyridine nucleotide reduction by thiosulfate (264 nmol per min per mg of protein) is in excess of that rate needed to sustain growth. Pyridine nucleotide reduction, adenosine triphosphate synthesis, and carbohydrate synthesis are prevented by the uncoupler m-Cl-Carbonylcyanide phenylhydrazone. Sodium amytal inhibits pyridine nucleotide reduction and carbohydrate synthesis are prevented by the uncoupler m-Cl-carbonylcyanide observations are reproduced when sulfide serves as the substrate. The rate of pyridine nucleotide anaerobic reduction with endogenous substrates or thiosulfate is less than 1% of the aerobic rate with thiosulfate. We conclude that the principal, if not the only, pathway of pyridine nucleotide reduction proceeds through an energy-dependent and amytal-sensitive step when either thiosulfate or sulfide is used as the substrate.  相似文献   

19.
Exogenous nicotinamide adenine dinucleotide is not utilized per se by Escherichia coli, but is converted to nicotinamide and thence to nicotinamide adenine dinucleotide via nicotinate.  相似文献   

20.
The enzyme utilizing metaphosphate for nicotinamide adenine dinucleotide phosphorylation was purified 500-fold from B. ammoniagenes and its properties were studied. The isolated enzyme appeared homogeneous on disc gel electrophoresis; its molecular weight was determined to be 9.0 × 104 by gel filtration. This enzyme specifically phosphorylated nicotinamide adenine dinucleotide at the optimum pH at 6.0. Of phosphoryl donors tested, metaphosphate was most effective for the reaction, and adenosine-5′-triphosphate was less effective. The activity was inhibited by adenosine-5′-monophosphate, adenosine-5′-diphosphate or reduced pyridine nucleotides. The enzyme did not exhibit catalytic activity in the absence of a divalent cation. We concluded that the enzyme phosphorylating nicotinamide adenine dinucleotide in the presence of metaphosphate is distinct from adenosine-5′-triphosphate-dependent nicotinamide adenine dinucleotide kinase, and tentatively designated it metaphosphate-dependent nicotinamide adenine dinucleotide kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号