首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hsp70 and Hsp40 chaperones do not modulate retinal phenotype in SCA7 mice   总被引:3,自引:0,他引:3  
Nine neurodegenerative diseases, including spinocerebellar ataxia type 7 (SCA7), are caused by the expansion of polyglutamine stretches in the respective disease-causing proteins. A hallmark of these diseases is the aggregation of expanded polyglutamine-containing proteins in nuclear inclusions that also accumulate molecular chaperones and components of the ubiquitin-proteasome system. Manipulation of HSP70 and HSP40 chaperone levels has been shown to suppress aggregates in cellular models, prevent neuronal death in Drosophila, and improve to some extent neurological symptoms in mouse models. An important issue in mammals is the relative expression levels of toxic and putative rescuing proteins. Furthermore, overexpression of both HSP70 and its co-factor HSP40/HDJ2 has never been investigated in mice. We decided to address this question in a SCA7 transgenic mouse model that progressively develops retinopathy, similar to SCA7 patients. To co-express HSP70 and HDJ2 with the polyglutamine protein, in the same cell type, at comparable levels and with the same time course, we generated transgenic mice that express the heat shock proteins specifically in rod photoreceptors. While co-expression of HSP70 with its co-factor HDJ2 efficiently suppressed mutant ataxin-7 aggregation in transfected cells, they did not prevent either neuronal toxicity or aggregate formation in SCA7 mice. Furthermore, nuclear inclusions in SCA7 mice were composed of a cleaved mutant ataxin-7 fragment, whereas they contained the full-length protein in transfected cells. We propose that differences in the aggregation process might account for the different effects of chaperone overexpression in cellular and animal models of polyglutamine diseases.  相似文献   

2.
Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant spinocerebellar degeneration characterized by a wide range of clinical manifestations. The molecular mechanisms underlying the selective neuronal death typical of MJD/SCA3 are unknown. In this study, human SK-N-SH neuroblastoma cells stably transfected with full-length MJD with 78 CAG repeats were assayed for the dynamic expression of Hsp27, known as a suppressor of poly-Q mediated cell death, in the presence of mutant ataxin-3 in different passages of cultured cells. A dramatic decrease of Hsp27 expression was observed in the earlier passage of cultured SK-N-SH-MJD78 cells, however, the later passage of cells showed a significant increase of Hsp27 to almost the same level of the parental cells. Furthermore, immunohistochemical analysis of MJD transgenic mice and post-mortem human brain tissues showed increased expression of Hsp27 compared to normal control brain, suggesting an up-regulation of Hsp27 in the end stage of MJD. However, mutant cells of earlier passages were more susceptible to serum deprivation than mutant cells of later passages, indicating weak tolerance toward stress in cells with reduced Hsp27. While heat shock was used to assess the stress response, cells expressing mutant ataxin-3 displayed normal response upon heat shock stimuli when compared to the parental cells. Taken together, we proposed that during the early disease stage, the reduction of Hsp27 synthesis mitigated the ability of neuron cells to cope with cytotoxicity induced by mutant ataxin-3, triggering the cell death process during the disease progress. In the late stage of disease, after prolonged stressful conditions of polyglutamine cytotoxicity, the increased level of Hsp27 may reflect a dynamic process of the survived cells to unfold and remove mutant ataxin-3. However, this increased Hsp27 still cannot reverse the global dysfunction of cellular proteins due to accumulation of cytotoxic effects.  相似文献   

3.
Spinal and bulbar muscular atrophy (SBMA) is one of a group of human inherited neurodegenerative diseases caused by polyglutamine expansion. We have previously demonstrated that the SBMA gene product, the androgen receptor protein, is toxic and aggregates when truncated. Heat shock proteins function as molecular chaperones, which recognize and renaturate misfolded protein (aggregate). We thus assessed the effect of a variety of chaperones in a cultured neuronal cell model of SBMA. Overexpression of chaperones reduces aggregate formation and suppresses apoptosis in a cultured neuronal cell model of SBMA to differing degrees depending on the chaperones and their combinations. Combination of Hsp70 and Hsp40 was the most effective among the chaperones in reducing aggregate formation and providing cellular protection, reflecting that Hsp70 and Hsp40 act together in chaperoning mutant and disabled proteins. Although Hdj2/Hsdj chaperone has been previously reported to suppress expanded polyglutamine tract-formed aggregate, Hsdj/Hdj2 showed little effect in our system. These findings indicate that chaperones may be one of the key factors in the developing of CAG repeat disease and suggested that increasing expression level or enhancing the function of chaperones will provide an avenue for the treatment of CAG repeat disease.  相似文献   

4.
CHIP (C terminus of Hsc-70 interacting protein) is an E3 ligase that links the protein folding machinery with the ubiquitin-proteasome system and has been implicated in disorders characterized by protein misfolding and aggregation. Here we investigate the role of CHIP in protecting from ataxin-1-induced neurodegeneration. Ataxin-1 is a polyglutamine protein whose expansion causes spinocerebellar ataxia type-1 (SCA1) and triggers the formation of nuclear inclusions (NIs). We find that CHIP and ataxin-1 proteins directly interact and co-localize in NIs both in cell culture and SCA1 postmortem neurons. CHIP promotes ubiquitination of expanded ataxin-1 both in vitro and in cell culture. The Hsp70 chaperone increases CHIP-mediated ubiquitination of ataxin-1 in vitro, and the tetratricopeptide repeat domain, which mediates CHIP interactions with chaperones, is required for ataxin-1 ubitiquination in cell culture. Interestingly, CHIP also interacts with and ubiquitinates unexpanded ataxin-1. Overexpression of CHIP in a Drosophila model of SCA1 decreases the protein steady-state levels of both expanded and unexpanded ataxin-1 and suppresses their toxicity. Finally we investigate the ability of CHIP to protect against toxicity caused by expanded polyglutamine tracts in different protein contexts. We find that CHIP is not effective in suppressing the toxicity caused by a bare 127Q tract with only a short hemagglutinin tag, but it is very efficient in suppressing toxicity caused by a 128Q tract in the context of an N-terminal huntingtin backbone. These data underscore the importance of the protein framework for modulating the effects of polyglutamine-induced neurodegeneration.  相似文献   

5.
Huntingtin is a widely expressed 350-kDa cytosolic multidomain of unknown function. Aberrant expansion of the polyglutamine tract located in the N-terminal region of huntingtin results in Huntington's disease. The presence of insoluble huntingtin inclusions in the brains of patients is one of the hallmarks of Huntington's disease. Experimentally, both full-length huntingtin and N-terminal fragments of huntingtin with expanded polyglutamine tracts trigger aggregate formation. Here, we report that upon the formation of huntingtin aggregates; endogenous cytosolic huntingtin, Hsc70/Hsp70 (heat shock protein and cognate protein of 70kDa) and syntaxin 1A become aggregate-centered. This redistribution suggests that these proteins are eventually depleted and become unavailable for normal cellular function. These results indicate that the cellular targeting of several key proteins are altered in the presence of mutant huntingtin and suggest that aggregate depletion of these proteins may underlie, in part, the sequence of disease progression.  相似文献   

6.
Parkin, the most commonly mutated gene in familial Parkinson's disease, encodes an E3 ubiquitin ligase. A number of candidate substrates have been identified for parkin ubiquitin ligase action including CDCrel-1, o-glycosylated alpha-synuclein, Pael-R, and synphilin-1. We now show that parkin promotes the ubiquitination and degradation of an expanded polyglutamine protein. Overexpression of parkin reduces aggregation and cytotoxicity of an expanded polyglutamine ataxin-3 fragment. Using a cellular proteasome indicator system based on a destabilized form of green fluorescent protein, we demonstrate that parkin reduces proteasome impairment and caspase-12 activation induced by an expanded polyglutamine protein. Parkin forms a complex with the expanded polyglutamine protein, heat shock protein 70 (Hsp70) and the proteasome, which may be important for the elimination of the expanded polyglutamine protein. Hsp70 enhances parkin binding and ubiquitination of expanded polyglutamine protein in vitro suggesting that Hsp70 may help to recruit misfolded proteins as substrates for parkin E3 ubiquitin ligase activity. We speculate that parkin may function to relieve endoplasmic reticulum stress by preserving proteasome activity in the presence of misfolded proteins. Loss of parkin function and the resulting proteasomal impairment may contribute to the accumulation of toxic aberrant proteins in neurodegenerative diseases including Parkinson's disease.  相似文献   

7.
Spinocerebellar ataxia type 1 (SCA1) is an inherited neurodegenerative disorder. The mutation causing SCA1 is an expansion in the polyglutamine tract of the ATXN1 protein. Previous work demonstrated that phosphorylation of mutant ATXN1 at serine 776 (S776), a putative Akt phosphorylation site, is critical for pathogenesis. To examine this pathway further, we utilized a cell-transfection system that allowed the targeting of Akt to either the cytoplasm or the nucleus. In contrast to HeLa cells, we found that Akt targeted to the cytoplasm increased the degradation of ATXN1 in Chinese hamster ovary cells. However, Akt targeted to the cytoplasm failed to destabilize ATXN1 if Hsp70/Hsc70 was present. Thus, Hsp70/Hsc70 can regulate ATXN1 levels in concert with phosphorylation of ATXN1 at S776.  相似文献   

8.
9.
Spinocerebellar ataxia type-3 or Machado-Joseph disease (SCA3/MJD) is an autosomal dominant neurodegenerative disease caused by triplet nucleotide expansion. The expansion of the polyglutamine tract near the C terminus of the MJD1 gene product, ataxin-3, above a threshold of 40 glutamine repeats causes neuronal loss and degeneration. The expanded ataxin-3 forms aggregates, and nuclear inclusions, within neurons, possibly due to the misfolding of mutant proteins. Here we report upon the behavioral test changes related to truncated and expanded forms of MJD protein (MJDtr) in Drosophila, and show that expanded MJDtr, when expressed in the nervous system, causes characteristic locomotor dysfunction and anosmia. This phenomenon has not been previously reported in humans or in transgenic Drosophila models. In addition, the in vivo expression of the antiapoptotic gene bcl-2 showed no evidence of ameliorating the deleterious effect of MJDtr-Q78s, either in the eye or in the nervous system. The study shows that such Drosophila transgenic models express olfactory dysfunction and ataxic behavior as observed in human patients.  相似文献   

10.
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The N-terminal fragment of AR containing the expanded polyglutamine tract aggregates in cytoplasm and/or in nucleus and induces cell death. Some chaperones such as Hsp40 and Hsp70 have been identified as important regulators of polyglutamine aggregation and/or cell death in neuronal cells. Recently, Hsp105alpha, expressed at especially high levels in mammalian brain, has been shown to suppress apoptosis in neuronal cells and prevent the aggregation of protein caused by heat shock in vitro. However, its role in polyglutamine-mediated cell death and toxicity has not been studied. In the present study, we examined the effects of Hsp105alpha on the aggregation and cell toxicity caused by expansion of the polyglutamine tract using a cellular model of SBMA. The transient expression of truncated ARs (tARs) containing an expanded polyglutamine tract caused aggregates to form in COS-7 and SK-N-SH cells and concomitantly apoptosis in the cells with the nuclear aggregates. When Hsp105alpha was overexpressed with tAR97 in the cells, Hsp105alpha was colocalized to aggregates of tAR97, and the aggregation and cell toxicity caused by expansion of the polyglutamine tract were markedly reduced. Both beta-sheet and alpha-helix domains, but not the ATPase domain, of Hsp105alpha were necessary to suppress the formation of aggregates in vivo and in vitro. Furthermore, Hsp105alpha was found to localize in nuclear inclusions formed by ARs containing an expanded polyglutamine tract in tissues of patients and transgenic mice with SBMA. These findings suggest that overexpression of Hsp105alpha suppresses cell death caused by expansion of the polyglutamine tract without chaperone activity, and the enhanced expression of the essential domains of Hsp105alpha in brain may provide an effective therapeutic approach for CAG repeat diseases.  相似文献   

11.
Schuldiner O  Shor S  Benvenisty N 《Gene》2002,285(1-2):91-99
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease caused by the expansion of a polyglutamine tract in the protein ataxin-7, a protein of unknown function. In order to analyze the expression pattern of wild type ataxin-7 in detail, the murine SCA7 gene homolog was cloned and the expression pattern in mice analyzed. The SCA7 mouse and human gene exhibit a high degree of identity at both DNA (88.2%) and protein (88.7%) level. The CAG repeat region, known to be polymorphic in man, is conserved in mouse but contained only five repeats in all mouse strains analyzed. The arrestin homology domain and the nuclear localization signal found in human ataxin-7 is also conserved in the murine homolog. Expression of ataxin-7 was detected during mouse embryonic development and in all adult mouse tissues examined by northern and western blots. In brain, immunohistological staining revealed an ataxin-7 expression pattern similar to that in human, with ataxin-7 expression in cerebellum, several brainstem nuclei, cerebral cortex and hippocampus. Our data show high conservation of ataxin-7 both structurally and at the level of expression, suggesting a conserved role for the protein in mice and humans.  相似文献   

12.
At least nine neurodegenerative disorders are caused by expansion of polyglutamine repeats in various genes. This expansion induces the formation of nuclear inclusions (NI) within various cell types. In this study, we developed a model for polyglutamine diseases using primary cultures of sympathetic neurons from the superior cervical ganglia of prenatal rat pups. Transfection with a plasmid encoding 127 glutamine repeats causes NI to develop in approximately 70% of the sympathetic neurons within 6 days. In addition, it causes somatic atrophy and inhibits dendritic growth. The NIs contain ubiquitinated proteins and sequester the molecular chaperone heat shock protein 70 (Hsp70). We found that two specific proteasome inhibitors, lactacystin and CEP1612, suppress thezformation of polyglutamine-induced NI. In addition, lactacystin treatment induced the removal of preexisting NI. Western blotting and immunocytochemistry revealed that lactacystin and CEP1612 strongly induce the expression of Hsp70, whereas less specific proteasome inhibitor such as N-acetyl-Leu-Leu-Norleucinal does not. Coexpression of 127 glutamines with a plasmid encoding wild-type Hsp70 gene resulted in a marked reduction of the percentage of neurons containing NI. In addition, transfection with plasmids encoding mutant Hsp70 blocked the effects of lactacystin. These findings further implicate Hsp70 as a neuroprotective molecule and they suggest the potential utility of certain proteasome inhibitors in the treatment of polyglutamine diseases.  相似文献   

13.
There are no effective therapeutics that antagonize or reverse the protein-misfolding events underpinning polyglutamine (PolyQ) disorders, including Spinocerebellar Ataxia Type-3 (SCA3). Here, we augment the proteostasis network of Drosophila SCA3 models with Hsp104, a powerful protein disaggregase from yeast, which is bafflingly absent from metazoa. Hsp104 suppressed eye degeneration caused by a C-terminal ataxin-3 (MJD) fragment containing the pathogenic expanded PolyQ tract, but unexpectedly enhanced aggregation and toxicity of full-length pathogenic MJD. Hsp104 suppressed toxicity of MJD variants lacking a portion of the N-terminal deubiquitylase domain and full-length MJD variants unable to engage polyubiquitin, indicating that MJD-ubiquitin interactions hinder protective Hsp104 modalities. Importantly, in staging experiments, Hsp104 suppressed toxicity of a C-terminal MJD fragment when expressed after the onset of PolyQ-induced degeneration, whereas Hsp70 was ineffective. Thus, we establish the first disaggregase or chaperone treatment administered after the onset of pathogenic protein-induced degeneration that mitigates disease progression.  相似文献   

14.
15.
Spinocerebellar ataxia type 7 (SCA7) is caused by a toxic polyglutamine (polyQ) expansion in the N-terminus of the protein ataxin-7. Ataxin-7 has a known function in the histone acetylase complex, Spt/Ada/Gcn5 acetylase (STAGA) chromatin-remodeling complex. We hypothesized that some histone deacetylase (HDAC) family members would impact the posttranslational modification of normal and expanded ataxin-7 and possibly modulate ataxin-7 function or neurotoxicity associated with the polyQ expansion. Interestingly, when we coexpressed each HDAC family member in the presence of ataxin-7 we found that HDAC3 increased the posttranslational modification of normal and expanded ataxin-7. Specifically, HDAC3 stabilized ataxin-7 and increased modification of the protein. Further, HDAC3 physically interacts with ataxin-7. The physical interaction of HDAC3 with normal and polyQ-expanded ataxin-7 affects the toxicity in a polyQ-dependent manner. We detect robust HDAC3 expression in neurons and glia in the cerebellum and an increase in the levels of HDAC3 in SCA7 mice. Consistent with this we found altered lysine acetylation levels and deacetylase activity in the brains of SCA7 transgenic mice. This study implicates HDAC3 and ataxin-7 interaction as a target for therapeutic intervention in SCA7, adding to a growing list of neurodegenerative diseases that may be treated by HDAC inhibitors.  相似文献   

16.
The subject of the present study is the influence of mercury on association of rat liver glucocorticoid receptor (GR) with heat shock proteins Hsp90 and Hsp70. The glucocorticoid receptor heterocomplexes with Hsp90 and Hsp70 were immunopurified from the liver cytosol of rats administered with different doses of mercury. The amounts of co-immunopurified apo-receptor, Hsp90 and Hsp70 were then determined by quantitative Western blotting. The ratio between the amount of heat shock protein Hsp90 or Hsp70 and the amount of apo-receptor within immunopurified heterocomplexes was found to increase in response to mercury administration. On the other hand, the levels of Hsp90 and Hsp70 in hepatic cytosol remained unaltered. The finding that mercury stimulates association of the two heat shock proteins with the glucocorticoid receptor, rendering the cytosolic heat shock protein levels unchanged, suggests that mercury affects the mechanisms controlling the assembly of the receptor heterocomplexes.  相似文献   

17.
18.
Insoluble aggregates of polyglutamine-containing proteins are usually conjugated with ubiquitin in neurons of individuals with polyglutamine diseases. We now show that ataxin-3, in which the abnormal expansion of a polyglutamine tract is responsible for spinocerebellar ataxia type 3 (SCA3), undergoes ubiquitylation and degradation by the proteasome. Mammalian E4B (UFD2a), a ubiquitin chain assembly factor (E4), copurified with the polyubiquitylation activity for ataxin-3. E4B interacted with, and thereby mediated polyubiquitylation of, ataxin-3. Expression of E4B promoted degradation of a pathological form of ataxin-3. In contrast, a dominant-negative mutant of E4B inhibited degradation of this form of ataxin-3, resulting in the formation of intracellular aggregates. In a Drosophila model of SCA3, expression of E4B suppressed the neurodegeneration induced by an ataxin-3 mutant. These observations suggest that E4 is a rate-limiting factor in the degradation of pathological forms of ataxin-3, and that targeted expression of E4B is a potential gene therapy for SCA3.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号