首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Lactobacillus acidophilus M92, Lactobacillus plantarum L4 and Enterococcus faecium L3 were previously selected as probiotic strains on the base of in vitro selection criteria. To investigate functional properties of these three probiotic strains in vivo, Swiss albino mice were used as animal model. Survival, competition, adhesion and colonization were monitored in the gastrointestinal tract, as well as the immunomodulating capability of L. acidophilus M92, L. plantarum L4 and E. faecium L3. During the feeding of mice with probiotic strains with daily dose of 2 × 1010 rifampicin-resistant cells, the number of lactic acid bacteria in the faeces increased and reduction of enterobacteria and sulphite-reducing clostridia was observed. Rifampicin-resistant colonies of probiotic strains could be reisolated from the faeces of mice fed with the rifampicin-resistant cells. The similar results were obtained in homogenates of small and large intestine of mice on the first and fourteenth days after feeding with L. acidophilus M92, L. plantarum L4 and E. faecium L3. The adherence of the probiotic strains obtained in vitro correlated with their capability to adhere to mouse ileal epithelial cells in vivo. After oral immunization of mice with viable cells of L. acidophilus M92, L. plantarum L4 and E. faecium L3 with a daily dose of 2 × 1010 cells, the concentrations of serum IgA, IgG and IgM antibodies from all groups of mice were significantly higher in comparison to the control.  相似文献   

2.
Previously selected bacterial probiotic strains Enterococcus faecium L3, Lactobacillus plantarum L4 and Lactobacillus acidophilus M92 have shown their potential as functional starter cultures in silage, white cabbage and milk fermentation. Therefore, the phenotypic and genotypic characteristics important for their application in food industry were investigated. Pulsed-field gel electrophoresis (PFGE) of NotI digested genomic DNA, in combination with physiological traits determined by API tests, made a useful tool for identification of these probiotic strains and differentiation among them. Lyophilized probiotic cells remained viable during 75 days of storage at −20, +4 and +15°C, while fresh concentrated cells remained viable only at −20°C with addition of glycerol as cryoprotectant. After the lyophilization with addition of skim milk as lyoprotectant, the viability of L. acidophilus M92, L. plantarum L4 and E. faecium L3 was reduced by only 0.37, 0.44 and 0.50 log, respectively. Furthermore, probiotic strains L. acidophilus M92, L. plantarum L4, and E. faecium L3, demonstrated anti-Salmonella activity, and L. acidophilus M92 having also antilisterial activity demonstrated by in vitro competition test. Overnight cultures and cell-free supernatants of the three probiotic strains exerted also an antagonistic effect against the Gram-positive and Gram-negative test microorganisms examined, demonstrated by the agar-well diffusion test. The inhibition of Listeria monocytogenes, Salmonella typhimurium, Yersinia enterocolitica, and Acinetobacter calcoaceticus obtained, achieved by the neutralized, 5-fold concentrated supernatant of L. plantarum L4, may be the result of its bacteriocinogenic activity. On the basis of these results, the application of the three examined probiotic strains may become a point of great importance in respect of food safety.  相似文献   

3.
Fourteen Lactobacillus strains of six species were investigated with their characteristics of bile salt tolerance, deconjugation of sodium taurocholate and cholesterol removal in the spent broth. Meanwhile, a co-precipitation curve of cholesterol with cholic acid at concentrations ranged 0.0–6.0 μM/ml was involved in the evaluation of cholesterol removal. Results demonstrated that both co-precipitation and assimilation effects contributed to cholesterol removal during the incubation of these Lactobacillus strains. It was also indicated that the supplementation of bile salts influenced the cholesterol removal, not only as an essential factor related to co-precipitation but also a critical condition for cholesterol assimilation. Out of all strains tested, four L. plantarum strains LS12, LS31, Lp501 and Lp529 exhibited a high ability of cholesterol assimilation (maximum 20.76 μg/ml), deconjugation of sodium taurocholate (maximum 5.00 μM/ml) and bile tolerance. They could be further studied and used as potential probiotics strains to reduce serum cholesterol in humans  相似文献   

4.
Summary To provide a useful screening method for selecting probiotics, we compared the pH and bile resistance of four strains of Lactobacillus acidophilus, KCTC3140, KCTC3146, KCTC3154, and KCTC3179, isolated from a rat, pig, chicken, and human, respectively. When we compared the pH resistance of these strains at pH 2, 3, 4, 5 and 7, we found that L. acidophilus isolated from the rat, chicken, and pig showed little or no decrease in viable cell numbers, except at 240 min, whereas the numbers of L. acidophilus KCTC3179 from the human decreased significantly. All four strains were slightly suppressed over time and showed bile resistance, even at 3%. At 5% oxgall, the number of KCTC3179 rapidly decreased at 30 min. These results indicate that lactic acid bacteria selected for probiotic use should be screened at pH 2 for 120 min and/or at an oxgall concentration of 5% for 30 min.  相似文献   

5.
The aim of this study was to screen potential probiotic lactic acid bacteria from Chinese spontaneously fermented non-dairy foods by evaluating their probiotic and safety properties. All lactic acid bacteria (LAB) strains were identified by 16S rRNA gene sequencing. The in vitro probiotic tests included survival under low pH and bile salts, cell surface hydrophobicity, auto-aggregation, co-aggregation, antibacterial activity, and adherence ability to cells. The safety properties were evaluated based on hemolytic activity and antibiotic resistance profile. The salt tolerance, growth in litmus milk, and acidification ability were examined on selected potential probiotic LAB strains to investigate their potential use in food fermentation. A total of 122 strains were isolated and identified at the species level by 16S rRNA gene sequencing and included 62 Lactobacillus plantarum, 40 Weissella cibaria, 12 Lactobacillus brevis, 6 Weissella confusa, and 2 Lactobacillus sakei strains. One W. cibaria and nine L. plantarum isolates were selected based on their tolerance to low pH and bile salts. The hydrophobicity, auto-aggregation, co-aggregation, and antagonistic activities of these isolates varied greatly. All of the 10 selected strains showed multiple antibiotic resistance phenotypes and no hemolytic activity. The highest adhesion capacity to SW480 cells was observed with L. plantarum SK1. The isolates L. plantarum SK1, CB9, and CB10 were the most similar strains to Lactobacillus rhamnosus GG and selected for their high salt tolerance and acidifying activity. The results revealed strain-specific probiotic properties were and potential probiotics that can be used in the food industry.  相似文献   

6.
【目的】对3株罗伊氏乳杆菌的生物学特性进行分析比较,为后期生产应用提供一定的参考。【方法】对实验室保藏的3株罗伊氏乳杆菌的生长曲线、pH曲线、耐受人工胃液能力、耐受猪胆盐能力、黏附能力、抑菌能力和对抗生素的耐药性等特性进行了分析比较。【结果】3株菌生长趋势大致相同;3株菌对人工胃液均具有良好的耐受性,且可以有效地抑制大肠杆菌和金黄色葡萄球菌的生长;菌株L0和L2对高胆盐的环境耐受性较差,菌株L1则对高胆盐环境具有极强的耐受性;菌株L1和L2具有很强的黏附能力;3株菌对20种抗生素表现出不同的耐受性。【结论】菌株L1的生物学特性明显优于其他两株菌株,有利于后期的生产应用。  相似文献   

7.
Aims: The present work was aimed at identifying strains of lactic acid bacteria (LAB) from kimchi, with properties suitable for use as starter cultures in yogurt fermentation. Methods and Results: A total of 2344 LAB strains were obtained from two different sources, one group consisted of commercial LAB strains from kimchi, and the second group consisted of those strains isolated from various types of kimchi. The LAB strains from both groups were screened for resistance to biological barriers (acid and bile salts), and the four most promising strains were selected. Further analysis revealed that KFRI342 of the four selected strains displayed the greatest ability to reduce the growth of the cancer cells, SNU‐C4. The in vivo efficacy of strains in quinone reductase induction assay was evaluated, and the extent of DNA strand breakage in individual cells was investigated using the comet assay. Strain KFRI342 was identified as Lactobacillus acidophilus by 16S rRNA sequence analysis, showed protection against tumour initiation and imparted immunostimulation as well as protection against DNA damage. Conclusions: Strain KFRI342, which showed probiotic characteristics reducing cancer cell growth, could be a suitable starter culture for yogurt fermentation because of its strong acid production and high acid tolerance. Significance and Impact of the Study: This is the first report to describe a bacterium, isolated from kimchi, Lact. acidophilus KFRI342 which has the probiotic characteristics and the acid tolerance needed for its use as a starter culture in yogurt fermentation.  相似文献   

8.
A mixture of human-derived probiotic strains of Lactobacillus acidophilus, L. agilis and L. rhamnosus was used as a probiotic culture in ice cream manufacture. Viability and survival of these probiotic cultures were investigated in two different ice cream formulations. Ice cream with sucrose and ice cream with aspartame were prepared and each of these was divided into two subgroups: one with direct addition of the probiotic culture and one with milk fermented by the same probiotic culture. Ice cream samples were stored at −20°C for 6 months and the survival rate of cultures were determined monthly. Probiotic cultures underwent tests for resistance to bile salts, antibiotics, acidic conditions; they were found to be highly resistant to such challenges. Chemical analysis of ice cream samples, such as determination of acidity, pH and solid matter, was also performed. The probiotic cultures remained unchanged in ice cream stored for up to 6 months regardless of the sweeteners used. Using probiotic cultures in ice cream mixes did not alter the characteristics of the product.  相似文献   

9.
During the last decade, probiotic research has progressed considerably and significant advances have been made in the selection and characterization of specific probiotic strains. The most studied probiotics belong to the genus Lactobacillus. In this study, 80 Lactobacillus spp. isolated from healthy women tolerated low pH and were able to grow in the presence of bile salts. RAPD PCR technique resulted in the identification of 38 different types. These isolates were then evaluated based on adhesion capacity, antibiotic susceptibility and tolerance in simulated gastrointestinal tract. Species-specific PCR and detection of bacteriocin-related genes were also surveyed. Among the isolates, five strains—Lacticaseibacillus rhamnosus NO21, Lacticaseibacillus casei NO1, Lactiplantibacillus plantarum NO4, Lactobacillus acidophilus NO7 and Lactobacillus gasseri NO38presented acceptable antibiotic susceptibility pattern. Further analysis showed antimicrobial activity of Lacticaseibacillus culture against various bacterial pathogens and real-time PCR showed all five strains were able to prevent the colonization of bacterial pathogens. All five selected strains produced organic acids, hydrogen peroxide and were resistant to the spermicide. In addition, they lacked haemolytic activity with the ability of hydrophobicity, auto-aggregation and co-aggregation with pathogens. These results suggest that the vaginal microbiome could be a good source for the isolation of probiotics and the strains of this study may be considered as good probiotic candidates.  相似文献   

10.
The increasing interest in probiotic lactobacilli implicates the requirement of techniques that allow a rapid and reliable identification of these organisms. In this study, group-specific PCR and RAPD-PCR analyses were used to identify strains of the Lactobacillus casei and Lactobacillus acidophilus groups most commonly used in probiotic yogurts. Group-specific PCR with primers for the L. casei and L. acidophilus groups, as well as L. gasseri/johnsonii, could differentiate between 20 Lactobacillus strains isolated from probiotic yogurts and assign these into the corresponding groups. For identification of these strains to species or strain level, RAPD profiles of the 20 Lactobacillus strains were compared with 11 reference strains of the L. acidophilus and L. casei group. All except one strain could be attributed unambigously to the species L. acidophilus, L. johnsonii, L. crispatus, L. casei, and L. paracasei. DNA reassociation analysis confirmed the classification resulting from the RAPD-PCR.  相似文献   

11.
【目的】将分离自猪肠道粘膜、食糜和粪便的乳酸菌,通过产乳酸能力、生长性能、耐酸和耐胆盐性能及抑菌能力评价,筛选适应养猪生产的潜在益生特性的菌株。【方法】共分离获得155株乳酸菌纯菌株,从中筛选出4株产酸能力较强的乳酸菌,结合生理生化试验及细菌16S rRNA测序鉴定其种属,评价候选乳酸菌的生长情况、耐酸、耐胆盐及抑菌特性。【结果】综合变色时间(8 h)、pH值(3.9)和乳酸含量(100 mmol/L),筛选出4株(L45、L47、L63和L79)候选菌株,经鉴定依次为罗伊氏乳杆菌、植物乳杆菌、约氏乳杆菌和粪肠球菌。该4株乳酸菌均可在体外快速生长;L47和L79能够耐受pH 2.5的酸性环境,L47能够耐受0.5%胆盐环境;各乳酸菌上清液与指示菌共培养,发现对E coli K88和沙门氏菌均产生了抑制作用,其中L47上清液对指示菌的抑制作用较强。【结论】L47具有较好的产酸性能与生长性能、可耐受猪胃酸和肠道胆盐环境,对E.coli K88和沙门氏菌具有较好的抑制作用,说明该乳酸菌具有潜在的益生特性。  相似文献   

12.
模拟人体胃肠道环境筛选益生乳杆菌   总被引:7,自引:1,他引:6  
【目的】筛选具有益生特性的乳杆菌作为保健型酸奶的候选菌株。【方法】从健康人肠道和奶豆腐中分离筛选出耐受人工胃液的乳杆菌,对其进行体外益生特性(人工胃肠液耐受性、胆盐耐受性、抑菌活性及胆固醇降解能力)研究。【结果】从在乳杆菌分离培养基上有溶钙圈的41株菌株中筛选出5株耐酸、耐人工胃液较强的菌株,经16S rR NA基因测序鉴定,其中3株为乳杆菌,分别命名为植物乳杆菌Lp MT-3、植物乳杆菌Lp MT-5和唾液乳杆菌LsA F-7。在人工胃液中3株菌的耐受力均强于商品化的对照菌株LGG(鼠李糖乳杆菌GG);转入肠液4 h后直至26 h,Lp MT-5存活率基本稳定在45%左右,仅次于LGG。胆盐浓度为0.10%时,3株乳杆菌的耐胆盐能力均强于LGG;胆盐浓度为0.20%时,Lp MT-3和LsA F-7仍能存活。3株乳杆菌均具有抑菌活性,对粪肠球菌的抑制最明显,其次是金黄色葡萄球菌,对大肠杆菌、沙门氏菌的抑制作用较差。3株乳杆菌对胆固醇的清除效力依次为Lp MT-3LpM T-5Ls AF-7;清除率依次为Ls AF-7Lp MT-3LpM T-5。【结论】筛选出3株适应人体胃肠液环境、耐胆盐、抑菌及降胆固醇活力强的乳杆菌,可作为进一步开发新的益生菌产品和保健型酸奶的菌株。  相似文献   

13.
The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing novel fermented foods.  相似文献   

14.
Lactobacillus salivarius is a member of the indigenous microbiota of the human gastrointestinal tract (GIT), and some L. salivarius strains are considered as probiotics. Bile tolerance is a crucial property for probiotic bacteria to survive the transit through the GIT and exert their beneficial effects. In this work, the functional role of oppA encoding an oligopeptide transporter substrate-binding protein from L. salivarius Ren in bile salt tolerance was investigated. In silico analysis revealed that the oppA gene encodes a 61.7-kDa cell surface-anchored hydrophilic protein with a canonical lipoprotein signal peptide. Homologous overexpression of OppA was shown to confer 20-fold higher tolerance to 0.5 % oxgall in L. salivarius Ren. Furthermore, the recombinant strain exhibited 1.8-fold and 3.6-fold higher survival when exposed to the sublethal concentration of sodium taurocholate and sodium taurodeoxycholate, respectively, while no significant change was observed when exposed to sodium glycocholate and sodium glycodeoxycholate (GDCA). Our results indicate that OppA confers specific resistance to taurine-conjugated bile salts in L. salivarius Ren. In addition, the OppA overexpression strain also showed significant increased resistance to heat and salt stresses, suggesting the protective role of OppA against multiple stresses in L. salivarius Ren.  相似文献   

15.
To screen the lactic acid bacteria with cholesterol-lowering and triglyceride-lowering activity in vitro and evaluate their probiotic function. By plate separating, cholesterol-lowering and triglyceride-lowering activity in vitro were determined; and by evaluating the probiotic functions, including tolerances to simulated gastric and intestinal juice, the antibacterial spectrum, and the adhesion ability to Caco-2 cells, the probiotic strains with cholesterol-lowering and triglyceride-lowering activity in vitro were screened, and then were identified by phenotypical and physiological tests and 16Sr DNA. Finally, the cholesterol-lowering and triglyceride-lowering activity in vivo of the strains were evaluated using male Sprague-Dawley rats. Two strains L2-16 and L2-73 with stronger cholesterol-lowering and triglyceride-lowering activity in vitro, stronger tolerance to simulated gastric and intestinal juice and adhesion ability to Caco-2 cells, and wider antibacterial spectrum were screened from traditional Chinese fermented cucumber and were identified as Lactobacillus acidophilus and Enterococcus faecalis, respectively. Compared with a hyperlipidemia diet without lactic acid bacteria, the diet supplemented with Lactobacillus acidophilus L2-16 and Enterococcus faecalis L2-73 significantly reduced serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol levels, and liver total cholesterol and triglyceride levels in rats (P?<?0.05). Moreover, the diet supplemented with Lactobacillus acidophilus L2-16 and Enterococcus faecalis L2-73 significantly increased the fecal elimination of bile acids (P?<?0.05). Lactobacillus acidophilus L2-16 and Enterococcus faecalis L2-73 may have application prospect in the production of some fermented foods such as fermented vegetables, milk, or meat, and probiotic preparations with the function to lower the serum lipid and liver lipid levels.  相似文献   

16.
In the present study, four Lactobacillus strains from the cheese were analyzed for its probiotic potential against enteropathogenic bacteria. The probiotic properties of the selected strains were also analyzed and the selected bacterial strains showed high tolerance in bile salts and organic acid. The strain L. plantarum LP049 showed maximum survival rate (92 ± 4.2% and 93.3 ± 2%) after 3 h of treatment at 0.25% (w/v) bile salts and 0.25% (w/v) organic acid concentrations. The ability of the Lactobacillus strains to adhere to human epithelial cells (HT-29 cell lines) was evaluated and L. plantarum LP049 showed maximum adhesion property (19.2 ± 1.1%) than other tested strains. The Lactobacillus strains produced lactic acid at various concentrations. Compared with other strains, maximum level of lactic acid (3.1 g/L), hydrogen peroxide (4.31 mM) and bacteriocin (31 AU/mg) was detected in LB049. The inhibitory activity of culture supernatant against various bacterial pathogens was observed. The zone of inhibition ranged between 6 ± 2 mm and 23 ± 2 mm. The cell free extract showed activity against, Escherichia coli (ATCC 10536), Salmonella enteritidis (ATCC 13076), Shigella flexneri (ATCC 29903), and Enterococcus faecium (ATCC 8459). Consequently, L. plantarum LP049 may be considered as a potential candidate for the production of novel bioactive metabolites for therapeutic and bio-protective applications.  相似文献   

17.

Objectives

Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism.

Results

The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2.

Conclusions

Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.
  相似文献   

18.
Lactobacillus acidophilus DSM 20079 is the producer of a novel bacteriocin termed acidocin D20079. In this paper, mode of action using three various concentrations of acidocin D20079 (2,048, 128 and 11.3 AU/ml) was determined against an indicator strain L. delbrueckii subsp. lactis DSM 20076. These concentrations all led to marked decreases in both the number of viable cells and in optical density, indicating that the activity of the acidocin D20079 was bactericidal with concomitant cell lysis. Moreover, the probiotic potential of L. acidophilus DSM 20079 was analyzed for its ability to survive and retain viability at conditions (acid and bile concentrations) mimicking the gastrointestinal (GI) tract, under which it survived exposure to pH 2.0 with a 1.2 log cycle reduction in viability and where 45% of the original population survived in a medium containing 0.3% bile for 3 h.  相似文献   

19.
In this study, seven bacteriocinogenic and non-bacteriocinogenic LAB strains previously isolated from the intestines of Nile tilapia and common carp and that showed potent antibacterial activity against host-derived and non-host-derived fish pathogens were assayed for their probiotic and safety properties so as to select promising candidates for in vivo application as probiotic in aquaculture. All the strains were investigated for acid and bile tolerances, transit tolerance in simulated gastrointestinal conditions, for cell surface characteristics including hydrophobicity, co-aggregation and auto-aggregation, and for bile salt hydrolase activity. Moreover, haemolytic, gelatinase and biogenic amine-producing abilities were investigated for safety assessment. The strains were found to be tolerant at low pH (two strains at pH 2.0 and all the strains at pH 3.0). All of them could also survive in the presence of bile salts (0.3% oxgall) and in simulated gastric and intestinal juices conditions. Besides, three of them were found to harbour the gtf gene involved in pH and bile salt survival. The strains also showed remarkable cell surface characteristics, and 57.14% exhibited the ability to deconjugate bile salts. When assayed for their safety properties, the strains prove to be free from haemolytic activity, gelatinase activity and they could neither produce biogenic amines nor harbour the hdc gene. They did not also show antibiotic resistance, thus confirming to be safe for application as probiotics. Among them, Lactobacillus brevis 1BT and Lactobacillus plantarum 1KMT exhibited the best probiotic potentials, making them the most promising candidates.  相似文献   

20.
Understanding the mechanisms of stress response and adaptation to stress in the case of lactic acid bacteria (LAB), especially in the case of strains with functional properties, is very important when such strains are potential candidates for starter cultures or probiotics. In this context, our study shows the response of some LAB [four exopolysaccharide (EPS)-producing strains and one strain with potential probiotic effect] to the stresses induced by low and high incubation temperatures, acidity, NaCl, and bile salts, often encountered during the technological processes in food or during the passage through the human gastro-intestinal tract. The strains were able to grow at temperatures up to 40 °C (the mesophilic strains) and 47 °C (the thermophilic strain), in medium with an initial pH of at least 4.0 (Lactobacillus acidophilus IBB801), or in the presence of NaCl up to 10 % (Weissella confusa/cibaria 38.2), or bile salts up to 0.2 % (L. acidophilus IBB801). The protein and isoenzyme patterns of the strains subjected to various stress conditions presented several differences compared with the control patterns, among which the overexpression of some proteins of about 50–60 kDa, differences in the bands intensity in the case of the intracellular enzymes, or the complete loss of some of these bands. The best survival to low pH values and high temperatures was observed for strain L. acidophilus IBB801, the candidate probiotic strain. The EPS production of the four tested strains was, in general, directly related to the growth, the highest yields being obtained when strains were incubated at 24 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号