首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
Trypanosome variant surface glycoproteins (VSGs) exemplify a class of eukaryotic cell-surface glycoproteins that rely on a covalently attached lipid, glycosyl-phosphatidylinositol, for membrane attachment. The glycolipid anchor is acquired soon after translation of the polypeptide, apparently by replacement of a short sequence of carboxyl-terminal amino acids with a precursor glycolipid. A candidate glycolipid precursor (P2) and a related glycolipid (P3) have been identified in polar lipid extracts from trypanosomes. Both lipids are glycosylphosphatidylinositol species containing a Man3GlcN core glycan indistinguishable from the backbone sequence of the VSG glycolipid anchor. We and others have recently described the cell-free synthesis of P2, P3, and a spectrum of putative biosynthetic lipid intermediates using crude preparations of trypanosome membranes. In this paper we use these preparations to show that all three mannose residues in the glycosyl-phosphatidylinositol glycan are derived from dolichol-P-mannose.  相似文献   

2.
For the family of Trypanosomatidae (Trypanosoma and Leishmania) the organization of the glycoproteins on the cell surface is a well documented structural feature, because their plasma membranes are potential target for chemotherapy. By using metabolic labeling ( [32P] phosphate, [3H]-myristic acid, [3H]-galactose) and by appropriate fractionated extraction, we have found a trypanosomal molecule which has electrophoretic and chromatographic properties consistent with the lipophosphoglycan of Leishmania donovani defined by Turco et al (1987) Biochemistry 26, 6233-6238 (1). In addition, the trypanosomal lipophosphoglycan, appears to have chromatographic behaviour similar to the glycolipid C of Trypanosoma brucei brucei described by Krakow et al (1986) J. Biol. Chem. 261, 12147-12153 (2). Our results suggest that the role of the trypanosomal lipophosphoglycan may take place in the orientation of the glycoproteins in the surface coat and/or corresponds to the glycolipid precursor for the anchor of variant surface glycoprotein.  相似文献   

3.
A number of eukaryotic surface glycoproteins, including the variant surface glycoproteins of Trypanosoma brucei, are synthesized with a carboxyl-terminal hydrophobic peptide extension that is cleaved and replaced by a complex glycosyl-phosphatidylinositol (GPI) membrane anchor within 1-5 min of the completion of polypeptide synthesis. The rapidity of this carboxyl-terminal modification suggests the existence of a prefabricated precursor glycolipid that can be transferred en bloc to the polypeptide. We have reported the purification and partial characterization of a candidate precursor glycolipid (P2) and of a compositionally similar glycolipid (P3) from T. brucei (Menon, A. K., Mayor, S., Ferguson, M. A. J., Duszenko, M., and Cross, G. A. M. (1988) J. Biol. Chem. 263, 1970-1977). The primary structure of the glycan portions of P2 and P3 have now been analyzed by a combination of selective chemical fragmentation and enzymatic glycan sequencing at the subnanomolar level. The glycans were generated by deamination, NaB3H4 reduction, and dephosphorylation of glycolipids purified from different trypanosome variants. Glycan fragments derived from biosynthetically labeled glycolipids were also analyzed. The cumulative data strongly suggest that P2 and P3 contain ethanolamine-phosphate-Man alpha 1-2Man alpha 1-6Man alpha 1-GlcN linked glycosidically to an inositol residue, as do all the GPI anchors that have been structurally characterized. The structural similarities suggest that GPI membrane anchors are derived from common precursor glycolipids that become variably modified during or after addition to newly synthesized proteins.  相似文献   

4.
Trypanosoma brucei variant surface glycoproteins are apparently synthesized with a hydrophobic carboxyl-terminal peptide that is cleaved and replaced by a complex glycosylphosphatidylinositol membrane anchor within 1 min of the completion of polypeptide synthesis. The rapidity of this carboxyl-terminal modification suggests the existence of a prefabricated core glycolipid that would be transferred en bloc to the variant surface glycoprotein polypeptide. We report the purification and chemical characterization of a glycolipid from T. brucei that has properties consistent with a role as a variant surface glycoprotein glycolipid donor. This candidate glycolipid precursor has been defined by thin-layer chromatography of extracts of trypanosomes metabolically labeled with radioactive myristic acid, ethanolamine, glucosamine, mannose, and phosphate and by enzymatic, chemical, and gas chromatographic-mass spectrometric analysis. Mild alkali released 100% of the myristic acid, and reaction with phospholipase A2 released 50%. Nitrous acid deamination generated dimyristylphosphatidylinositol, and periodate oxidation released phosphatidic acid. Treatment of purified glycolipid with phosphatidylinositol-specific phospholipase C released dimyristylglycerol and a water-soluble glycan that was sized on Bio-Gel P-4 columns. The candidate precursor contained mannose, myristic acid, phosphate, and ethanolamine with an unsubstituted amino group, but not galactose.  相似文献   

5.
P30, the major surface antigen of the parasitic protozoan Toxoplasma gondii, can be specifically labeled with [3H]palmitic acid and with myo-[2-3H]inositol. The fatty acid label can be released by treatment of P30 with phosphatidylinositol-specific phospholipase C (PI-PLC). Such treatment exposes an immunological "cross-reacting determinant" first described on Trypanosoma brucei variant surface glycoprotein. PI-PLC cleavage of intact parasites metabolically labeled with [35S]methionine results in the release of intact P30 polypeptide in a form which migrates faster in polyacrylamide gel electrophoresis. These results argue that P30 is anchored by a glycolipid. Results from thin layer chromatography analysis of purified [3H] palmitate-labeled P30 treated with PI-PLC, together with susceptibility to mild alkali hydrolysis and to cleavage with phospholipase A2, suggest that the glycolipid anchor of T. gondii P30 includes a 1,2-diacylglycerol moiety.  相似文献   

6.
This is the first report establishing the existence of glycolipids synthesized by plasmodia, in particular Plasmodium falciparum. Trophozoites, schizonts, gametocytes, and gametes were metabolically labeled in vitro with [3H]glucosamine, [3H]galactose, [3H]glucose, [3H]mannose, [3H]fucose, [32P]inorganic phosphate, or [35S]sulfate, and total lipid extracts analyzed by high-performance thin-layer chromatography and autoradiography or fluorography. Parasites incorporated [3H]monosaccharides into distinctly different series of molecules previously undescribed. Three properties of [3H]glucosamine labeled molecules indicate they are glycolipids. First, labeled molecules have lipid solubility properties. Second, mobility on thin-layer chromatography was characteristic of glycolipids. Third, following acid hydrolysis, [3H]glucosamine was recovered from a total lipid extract of labeled parasites demonstrating that glucosamine is a constituent of some of these lipid molecules. Most of these glycolipids are neutral and alkali labile. The majority of these glycolipids differs from several synthesized phospholipids. None of these glycolipids was sulfated. Plasmodial glycolipid synthesis occurs concomitantly with glycoprotein synthesis, and both increase during schizogony. Many of these glycolipids appear to be identical among three strains of P. falciparum and between two species, P. falciparum and P. knowlesi. In contrast, there are stage specific differences in glycolipid synthesis among rings, schizonts, gametocytes, and a mixture of gametes plus zygotes of P. falciparum, examples of both erythrocytic and vector forms of the parasite.  相似文献   

7.
1. Electron microscope autoradiography indicated that L-[3H]fucose and D-[3H]glucosamine were both incorporated into cell-surface-associated glycoconjugates in the epidermis of cultured pig skin slices. 2. Acid hydrolysis and paper chromatography of skin homogenates confirmed that there was little metabolic conversion of the labeled precursors to other sugars. 3. Epidermis was separated from dermis using CaCl2, and was extracted with 8 M-urea/5% (w/v) sodium dodecyl sulphate and was then analysed by gel electrophoresis. The major component labelled with D-[3H]glucosamine had an apparent molecular weight in excess of 200 000. This material was not labelled with L-[3H]fucose. Lower molecular-weight components were labelled to a similar extent with both L-[3H]fucose and D-[3H]glucosamine. 4. The high molecular-weight material labelled with D-[3H]glucosamine was released into the medium when the epidermal cells were dispersed with trypsin, indicating that it was either surface-associated or was extracellular. It was also labelled with D-[14C]glucuronic acid, 35SO4(2-) and to a small extent with 14C-labelled amino acids indicating that it contained glycosaminoglycans derived from epidermal proteoglycans. This was confirmed by the fact that it was degraded by testicular hyaluronoglucosidase. It was not present in isolated membranes but was recovered in the soluble fraction from epidermal homogenates. It is therefore only very loosely bound at the cell surface or is present in the extracellular spaces. 5. Membrane-bound [3H]glycoproteins were identified after differential centrifugation of epidermal homogenates. The radioactivity profiles of membrane glycoproteins were similar whether L-[3H]fucose or D-[3H]glucosamine were used and both consisted of a major heterogeneous peak in the apparent mol.wt. range 70 000--150 000. [3H]Glycoproteins in this molecular-weight range were also major components of a plasma-membrane-enriched fraction. These glycoproteins were probably bound to the membrane by hydrophobic interactions, since they were only solubilized by treatment with detergent or organic solvent. They contained terminal sialic acid residues, since they were degraded by neuraminidase.  相似文献   

8.
1. Radioactivity from [3H]glucosamine is rapidly incorporated into cellular fractions of lens epithelial cells cultured in vitro. The incorporated isotope appears largely in glycoproteins of the cell surface that are exposed to trypsin and are released into a soluble form by proteolysis of intact cells. Glycoproteins are also secreted by cultured cells and can be recovered in the culture fluids. Sodium dodecysulphate-polyacrylamide gell electrophoresis shows that a range of glycoproteins with apparent molecular weights from approximately 14000 to 120000 are present. The relationships of these glycoproteins to collagen and the non-collagenous glycoproteins of lens basement membranes are discussed. 2. A plasma membrane fraction obtained from non-trypsinised lens epithelial cells contains one major glycoprotein of apparent molecular weight 120000. A major non-glycosylated polypeptide of molecular weight about 38000 detectable by Bloemendal et al. (1972) in plasma membranes of differentiated lens fibre cells was not prominent in lens epithelial cell membranes. 3. Examination of lens basement membranes extracted in various ways failed to reveal major glycoproteins of low molecular weight. Higher molecular weight glycoproteins, some of them related to collagen, were present.  相似文献   

9.
We have studied the binding of 125I-labeled high density lipoproteins (HDL3) to liver plasma membranes, which are thought to contain specific HDL receptor sites, using anti-peptide antibodies directed against two sites in the carboxyl-terminal region of human apoA-I. Two distinct antibody populations raised to peptides corresponding to amino acid residues 205-220 and 230-243, respectively, recognized regions of apoA-I that are exposed in the lipid environment of HDL3. However, anti-AI[230-243] IgG, but not anti-AI[205-220] IgG, recognized HDL2, suggesting that residues 205-220 of apoA-I are expressed differently in the two HDL populations. In addition, anti-AI[230-243] IgG showed strong cross-reactivity toward apoA-II. Epitope mapping studies showed that anti-AI[230-243] binds to an epitope located in the carboxyl-terminus of apoA-II, demonstrating significant structural homology between the carboxyl-terminal of apoA-II, demonstrating significant structural homology between the carboxyl-terminal regions of apoA-I and A-II, two candidate proteins for mediating the specific cellular interaction of HDL3. Fab fragments from anti-AI[205-220] and anti-AI[230-243] inhibited the binding of 125I-HDL3 to liver plasma membranes by approximately 80% and 60%, respectively. These findings are in agreement with our recent work using isolated CNBr fragments of apoA-I (Morrison, J., Fidge, N. H., and Tozuka, M. (1991) J. Biol. Chem. 266, 18780-18785), which suggest that the carboxyl-terminal region of apoA-I contains a binding domain which mediates the specific interaction of HDL3 with liver plasma membranes, possibly through the involvement of specific HDL receptors.  相似文献   

10.
We have detected a flavonoid 3[prime],5[prime]-hydroxylase (F3[prime],5[prime]H) in the microsomal fraction of Petunia hybrida flowers. Activity varied with the development of flowers, peaking immediately prior to and during anthesis, but was absent in mature flowers. F3[prime],5[prime]H activity in flower extracts from genetically defined floral color mutants correlated strictly with the genotypes Hf1 and Hf2. No activity was detected in flowers from mutants homozygous recessive for both alleles. F3[prime],5[prime]H activity was dependent on NADPH and molecular oxygen; there was only slight activity with NADH. The enzyme catalyzes the hydroxylation of 5,7,4[prime]-trihydroxyflavonone at the 3[prime] and 5[prime] positions, and of 5,7,3[prime],4[prime]-tetrahydroxyflavonone and dihydroquercetin at the 5[prime] position. Hydroxylase activity was inhibited by plant growth regulators (1-aminobenzotriazole and tetcyclacis) and by CO, N-ethylmaleimide, diethyldithiocarbamate, and cytochrome (Cyt) c. Activity was not affected by diethylpyrocarbonate or phenylmethylsulfonyl fluoride, but was enhanced by 2-mercaptoethanol. A polyclonal antibody that inhibits higher plant NADPH-Cyt P450 reductase inhibited the F3[prime],5[prime]H. The data are consistent with the suggestion that the P. hybrida F3[prime],5[prime]H is a monooxygenase consisting of a Cyt P450 and a NADPH-Cyt P-450 reductase. Cyts P450 were detected in microsomal membranes and in solubilized detergent extracts of these membranes. F3[prime],5[prime]H activity was sensitive to low concentrations of all detergents tested, and therefore solubilization of the active enzyme was not achieved. Reaction products other than flavanones were observed in F3[prime],5[prime]H assays and these may be formed by enzymic oxidation of flavanones. The possibility of a microsomal flavone synthase of a type that has not been described in P. hybrida is discussed.  相似文献   

11.
A guanine nucleotide regulatory protein may be involved in vasopressin-receptor-mediated polyphosphoinositide breakdown in rat liver. Therefore we examined the effects of the non-hydrolysable guanine nucleotide guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) on [3H]vasopressin ([3H]AVP) binding to hepatic plasma membranes and detergent extracts. [3H]AVP bound to a single set of high-affinity binding sites in membranes. Addition of p[NH]ppG decreased the affinity of receptor binding without altering the maximal binding capacity. The rate of dissociation of [3H]AVP from membrane-bound receptors was also enhanced by p[NH]ppG. Solubilization of [3H]AVP-prelabelled membranes with dodecyl beta-D-maltoside resulted in a [3H]AVP-receptor complex that was unstable in solution. Incubation of these extracts for 5 min at 30 degrees C resulted in a 40% loss of bound [3H]AVP, whereas in the presence of p[NH]ppG there was a 54% loss. However, when membranes were prelabelled with [3H]AVP and p[NH]ppG and then solubilized, the resulting hormone-receptor complex was still temperature-labile but insensitive to the further addition of p[NH]ppG. The molecular size of soluble vasopressin receptors was estimated by gel filtration. The [3H]AVP-receptor complex was eluted as a single peak with an apparent molecular size of 258 kDa. However, no peak was detected when solubilized extract was made from membranes prelabelled with [3H]AVP and p[NH]ppG, suggesting that this receptor complex had dissociated during chromatography. It is possible therefore that the high-Mr complex contains the hormone, its receptor and a guanine nucleotide binding protein.  相似文献   

12.
We have identified a Plasmodium vivax merozoite surface protein (MSP) that migrates on SDS-polyacrylamide gels at a Mr of about 185 kDa. This protein was recognized by a P. vivax monoclonal antibody (mAb) that localizes the protein by immunofluorescence to the surface of merozoites and also immunoprecipitates this protein from NP-40 detergent extracts of [35S]methionine metabolically radiolabeled P. vivax schizonts. The P. vivax MSP does not become biosynthetically radiolabeled with [3H]glucoamine, [3H]myristate, [3H]palmitate, or [3H]mannose, indicating that this P. vivax MSP is not posttranslationally modified and bound to the merozoite membrane by a glycosylphosphatidylinositol (GPI) lipid anchor. Thus, in this respect, this protein is different from members of the MSP-1 protein family and from MSP-2 and MSP-4 of P. falciparum. The mAb cross-reacts with and outlines the surface of P. cynomolgi merozoites and immunoprecipitates a 150-kDa P. cynomolgi homologue. The mAb was used as an affinity reagent to purify the native homologous MSP from NP-40 extracts of P. cynomolgi mature schizonts in order to develop a specific polyclonal antiserum. The resulting anti-PcyMSP rabbit antiserum cross-reacts strongly with the P. vivax 185-kDa MSP and also recognizes an analogous 110-kDa protein from P. knowlesi. We have determined via an immunodepletion experiment that the 110-kDa P. knowlesi MSP corresponds to the PK 110 protein partially characterized earlier (Perler et al. 1987). The potential of P. vivax MSP as a vaccine candidate was addressed by conducting in vitro inhibition of erythrocyte invasion assays, and the IgG fraction of both the P. vivax MSP mAb and the P. cynomolgi MSP rabbit antiserum significantly inhibited entry of P. vivax merozoites. We denote, on a preliminary basis, these antigenically related merozite surface proteins PvMSP-185, PcyMSP-150, and PkMSP-110.  相似文献   

13.
1. Phosphatidylinositol 4-phosphate (PtdIns4P) is degraded by isolated membranes from Xenopus laevis oocytes. 2. Incubation of [4-32P]PtdIns4P with membranes yields only radioactive inorganic phosphate, indicating the presence of a phosphomonoesterase. 3. Membranes hydrolyze Ptd[2-3H]Ins4P to produce mainly Ptd[2-3H]Ins in the lipid phase. In this incubation [3H]inositol and inositol monophosphate appear in the water phase. 4. Membrane incubations of Ptd[2-3H]Ins4P carried out in the presence of excess non-radioactive Ins(1,4)P2 allows the trapping of small amounts of [3H]Ins(1,4)P2. These results demonstrate the presence of a phospholipase C. 5. Testing several phosphorylated analogs, it is determined that fructose 1,6-bisphosphate and alpha-glycerophosphate are potent inhibitors of the oocyte PtdIns4P phosphomonoesterase.  相似文献   

14.
1. Basal and carbachol-stimulated accumulations of isomeric [3H]inositol mono-, bis-, tris- and tetrakis-phosphates were examined in rat cerebral-cortex slices labelled with myo-[2-3H]inositol. 2. In control samples the major [3H]inositol phosphates detected were co-eluted on h.p.l.c. with Ins(1)P, Ins(4)P (inositol 1- and 4-monophosphate respectively), Ins(1,4)P2 (inositol 1,4-bisphosphate), Ins(1,4,5)P3 (inositol 1,4,5-tris-phosphate) and Ins(1,3,4,5)P4 (inositol 1,3,4,5-tetrakisphosphate). 3. After stimulation to steady state with carbachol, accumulation of each of these products was markedly increased. 4. Agonist stimulation, however, also evoked much more dramatic increased accumulations of a second [3H]inositol trisphosphate, which was co-eluted on h.p.l.c. with authentic Ins(1,3,4)P3 (inositol 1,3,4-trisphosphate) and of three further [3H]inositol bisphosphates ([3H]InsP2(s]. 5. Examination of the latter by chemical degradation by periodate oxidation and/or h.p.l.c. allowed identification of these as [3H]Ins(1,3)P2, [3H]Ins(3,4)P2 and [3H]Ins(4,5)P2 (inositol 1,3-, 3,4- and 4,5-bisphosphates respectively), which respectively accounted for about 22%, 8% and 3% of total [3H]InsP2 in extracts from stimulated tissue slices. 6. By using a h.p.l.c. method which clearly resolves Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 (inositol 1,3,4,6-tetrakisphosphate), only the former isomer could be detected in extracts from either control or stimulated tissue slices. Similarly, [3H]inositol pentakis- and hexakis-phosphates were not detectable either in the presence or absence of carbachol under the radiolabelling conditions described. 7. The catabolism of [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4)P3 by cell-free preparations from cerebral cortex was also studied. 8. In the presence of Mg2+, [3H]Ins(1,4,5)P3 was specifically dephosphorylated via [3H]Ins(1,4)P2 and [3H]Ins(4)P to free [3H]inositol, whereas [3H]Ins(1,3,4)P3 was degraded via [3H]Ins(3,4)P2 and, to a lesser extent, via [3H]Ins(1,3)P2 to D- and/or L-[3H]Ins(1)P and [3H]inositol. 9. In the presence of EDTA, hydrolysis of [3H]Ins(1,4,5)P3 was greater than or equal to 95% inhibited, whereas [3H]Ins(1,3,4)P3 was still degraded, but yielded only a single [3H]InsP2 identified as [3H]Ins(1,3)P2. 10. The significance of these observations with cell-free preparations is discussed in relation to the proportions of the separate isomeric [3H]inositol phosphates measured in stimulated tissue slices.  相似文献   

15.
An xenogeneic rat anti-mouse T-cell serum, designated RAT*, has been shown to block the cytolytic activity of cytotoxic T lymphocytes (CTL) at a postbinding step. RAT* serum or the IgG fraction was extensively absorbed with the target cell, P815, a DBA mastocytoma, and used with or without further absorption to immunoprecipitate specific molecules from radiolabeled membrane extracts of CTL derived from either in vivo-allosensitized mice or from cytotoxic clones maintained in in vitro cultures. Cell surface sialic acid residues were labeled by oxidation with sodium periodate (NaIO4) and reduction with tritiated sodium borohydride ([3H]NaBH4). Alternatively, cell surface proteins were labeled with 125I by lactoperoxidase-catalyzed iodination. Nonidet P-40 (NP-40)-solubilized radiolabeled membranes were then immunoprecipitated with RAT* serum and analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). Three membrane-associated molecules of 95,000, 140,000 and 180,000 Mr were found by such analysis. The sensitivity of these three molecules to trypsinization and their susceptibility to labeling with [3H]NaBH4 suggested that they are glycoproteins. Moreover, when RAT* serum or the IgG fraction was absorbed with various cell types, its ability to immunoprecipitate the three molecules correlated with its ability to block cytolysis. Adsorption of RAT* serum with CTL, but not with nonimmune thymocytes, significantly reduced the ability of RAT* serum to inhibit cytotoxicity and to immunoprecipitate the 95k, 140k, and 180k molecules. Thus, these findings suggest that one or more of these cell surface molecules of CTL may be involved in the cytolytic process.  相似文献   

16.
Membrane-associated decay accelerating factor (DAF) of human erythrocytes (Ehu) was analyzed for a C-terminal glycolipid anchoring structure. Automated amino acid analysis of DAF following reductive radiomethylation revealed ethanolamine and glucosamine residues in proportions identical with those present in the Ehu acetylcholinesterase (AChE) anchor. Cleavage of radiomethylated 70-kilodalton (kDa) DAF with papain released the labeled ethanolamine and glucosamine and generated 61- and 55-kDa DAF products that retained all labeled Lys and labeled N-terminal Asp. Incubation of intact Ehu with phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves the anchors in trypanosome membrane form variant surface glycoproteins (mfVSGs) and murine thymocyte Thy-1 antigen, released 15% of the cell-associated DAF antigen. The released 67-kDa PI-PLC DAF derivative retained its ability to decay the classical C3 convertase C4b2a but was unable to membrane-incorporate and displayed physicochemical properties similar to urine DAF, a hydrophilic DAF form that can be isolated from urine. Nitrous acid deamination cleavage of Ehu DAF at glucosamine following labeling with the lipophilic photoreagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) released the [125I]TID label in a parallel fashion as from [125I]TID-labeled AChE. Biosynthetic labeling of HeLa cells with [3H]ethanolamine resulted in rapid 3H incorporation into both 48-kDa pro-DAF and 72-kDa mature epithelial cell DAF. Our findings indicate that DAF and AChE are anchored in Ehu by the same or a similar glycolipid structure and that, like VSGs, this structure is incorporated into DAF early in DAF biosynthesis prior to processing of pro-DAF in the Golgi.  相似文献   

17.
Site of attachment of 11-cis-retinal in bovine rhodopsin   总被引:9,自引:0,他引:9  
A dipeptide containing the binding site for retinal in bovine rhodopsin has been isolated and its sequence determined. Rhodopsin containing [11-3H]retinal was prepared in chromatographically pure form, and the [3H]retinal was reductively linked to its binding site on opsin by using borane--dimethylamine. The [3H]retinylopsin in octyl glucoside was exhaustively digested with Pronase, and its peptides were separated on silica gel in chloroform/methanol/ammonia [Bownds, D. (1967) Nature (London) 216, 1178--1181] followed by silica gel thin-layer chromatography in two solvent systems. The major retinyl peptide was shown to be alanyl-N epsilon-retinyllysine by amino acid composition, 3H content, and amino acid sequence analysis. The retinyl binding site is located in the carboxyl-terminal region of rhodopsin: when rod cell disk membranes containing [3H]retinal rhodopsin were digested with thermolysin and then reacted with sodium borohydride or borane--dimethylamine, [3H]retinal was reduced onto the F2 (Mr congruent to 6000) fragment, which derives from rhodopsin's carboxyl-terminal region.  相似文献   

18.
Two inhibitors of glycosylation, glucosamine and tunicamycin, were utilized to examine the effect of glycosylation inhibition in mouse neuroblastoma N18 cells on the degradation of membrane glycoproteins synthesized before addition of the inhibitor. Treatment with 10 mM-glucosamine resulted in inhibition of glycosylation after 2h, as measured by [3H]fucose incorporation into acid-insoluble macromolecules, and in a decreased rate of glycoprotein degradation. However, these results were difficult to interpret since glucosamine also significantly inhibited protein synthesis, which in itself could cause the alteration in glycoprotein degradation [Hudson & Johnson (1977) Biochim. Biophys. Acta 497, 567-577]. N18 cells treated with 5 microgram of tunicamycin/ml, a more specific inhibitor of glycosylation, showed a small decrease in protein synthesis relative to its effect on glycosylation, which was inhibited by 85%. Tunicamycin-treated cells also showed a marked decrease in glycoprotein degradation in experiments with intact cells. The inhibition of glycoprotein degradation by tunicamycin was shown to be independent of alterations in cyclic AMP concentration. Polyacrylamide-gel electrophoresis of isolated membranes from N18 cells, double-labelled with [14C]fucose and [3H]fucose, revealed heterogeneous turnover rates for specific plasma-membrane glycoproteins. Comparisons of polyacrylamide gels of isolated plasma membranes from [3H]fucose-labelled control cells and [14C]fucose-labelled tunicamycin-treated cells revealed that both rapidly and slowly metabolized, although not all, membrane glycoproteins became resistant to degradation after glycosylation inhibition.  相似文献   

19.
Semliki Forest virus was grown in BHK cells and labeled in vivo with radioactive monosaccharides. Pronase digests of the virus chromatographed on Bio-Gel P6 revealed glycopeptides of A-type and B-type. (For the nomenclature see Johnson, J. and Clamp, J.R. (1971) Biochem. J. 123, 739-745.) The former was labeled with [3H]fucose, [3H]galactose, [3H]mannose and [14C]glucosamine, the latter only with [3H]mannose and [14C]glucosamine. The three envelope glycoproteins E1, E2 and E3 were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to pronase digestion. The glycoproteins E1 and E3 revealed glycopeptides of A-type. E2 revealed glycopeptides of B-type. E2 yielded additionally a glycopeptide (Mr3100) which was heavily labeled from [3H]galactose, but only marginally from [14C]glucosamine, [3H]fucose and [3H]mannose. Whether this glycopeptide belongs to the A-type or not remains uncertain. The apparent molecular weights of the A-type units measured by gel filtration were 3400 in E1 and 4000 in E3; the B-type unit of E2 had an apparent molecular weight of 2000. Combined with the findings of our earlier chemical analysis these data suggest that E1 and E3 contain on the average one A-type unit; E2 probably contains one 3100 dalton unit plus one or two B-type units.  相似文献   

20.
Two types of experiments were carried out; either maize roots were incubated in L-[1-3H]fucose or membranes were prepared from root tips and these were incubated with GDP-L-[U-14C]fucose or UDP-D-[U-4C]glucose. The radioactively labelled lipids that were synthesized in vivo and in vitro were extracted and separated into polar and neutral components. The polar lipids had the characteristics of polyprenyl phosphate and diphosphate fucose or glucose derivatives, and the neutral lipids of sterol glycosides (fucose or glucose). A partial separation of the glycolipid synthetase reactions was achieved. Membranes were fractionated into material that sedimented at 20,000g and 100,000g. Most of the polar glycolipid synthetase activity (for the incorporation of both fucose and glucose) was located in the 100,000 g pellet, and this activity was probably located in the endoplasmic reticulum. The neutral lipid, which contained fucose, was synthesized mainly by membranes of the 20,000g pellet, and the activity was probably associated with the dictyosomes, whereas the neutral glucolipids were synthesized by all the membrane fractions. It is suggested that the polar (polyprenyl) lipids labelled with fucose could act as possible intermediates during the synthesis of the glycoproteins and slime in the root tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号