首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The fragile X mutation is the result of amplification in the repeat number of p(CGG) n in FMR-1; alleles with more than 52 repeats have been shown to be so unstable as to mutate in the repeat number in almost every transmission. To improve our understanding of mutations in normal alleles of FMR-1, the following studies were carried out in the Japanese population: a study on length variation in the repeat to determine the allele distribution of the repeat length in a non-retarded population, family studies to observe new mutations in normal allele, and haplotype analyses with microsatellite markers flanking the repeat to confirm estimated mutation rates and founder chromosomes in the fragile X syndrome. Analysis of the p(CGG) n in 370 unrelated males detected 24 distinct alleles with repeats of 18–44. A comparison with previously reported data suggests the presence of racial/ethnic differences in the allele distribution. No premutation allele was found in 824 unrelated X chromosomes examined by the polymerase chain reaction and Southern blot analysis. Family studies detected one new mutation in a total of 303 meioses. However, the mutation rate was not in accordance with the expected or observed heterozygosities in the population or with linkage disequilibrium observed between the repeat numbers and the haplotypes of the markers flanking the CGG. The haplotype in the chromosome in which the new mutation was found was the same as that frequently found in the Japanese fragile X chromosomes, and the variance in the CGG repeat number was wider in chromosomes with the haplotypes frequently found in the fragile X chromosome than in those with the other haplotypes. These observations suggest that a subgroup is present in normal alleles and that this subgroup is more liable to mutate than others.  相似文献   

2.
Polymerase chain reaction analysis of fragile X mutations   总被引:5,自引:0,他引:5  
Summary The mutation that underlies the fragile X syndrome is presumed to be a large expansion in the number of CGG repeats within the gene FMR-1. The unusually GC-rich composition of the expanded region has impeded attempts to amplify it by the polymerase chain reaction (PCR). We have developed a PCR protocol that successfully amplifies the (CGG)n region in normal, carrier and affected individuals. The PCR analysis of several large fragile X families is presented. The PCR results agree with those obtained by direct genomic Southern blot analyses. These favorable comparisons suggest that the PCR assay may be suitable for rapid testing for fragile X mutations and premutations and genetic screening of at-risk individuals.  相似文献   

3.
Molecular genetic analysis of individuals from 6 Egyptian and 33 German families with fragile X syndrome and 240 further patients with mental retardation was performed applying a completely non-radioactive system. The aim of our study was the development of a non-radioactive detection method and its implementation in molecular diagnosis of the fragile X syndrome. Furthermore, we wanted to assess differences in the mutation sizes between Egyptian and German patients and between Egyptian and German carriers of a premutation. Using non-radioactive polymerase chain reaction (PCR), agarose gel electrophoresis and blotting of the PCR products, followed by hybridisation with a digoxigenin-labelled oligonucleotide probe (CGG)5 and chemiluminescent detection, we identified the fragile X full mutation (amplification of a CGG repeat in the FMR-1 gene ranging from several hundred to several thousand repeat units) in all patients. We observed no differences in the length of the CGG repeat between the Egyptian and German patients and carriers, respectively. However, in one prenatal diagnosis, we detected only one normal sized allele in a female fetus using the PCR-agarose assay, whereas Southern blot analysis with the digoxigenin labelled probe StB 12.3 revealed presence of a full mutation. Our newly established nonradioactive genomic blotting method is based on the conventional radioactive Southern blot analysis. Labelling of the probe StB 12.3 with digoxigenin via PCR allowed the detection of normal, premutated and fully mutated alleles. For exact sizing of small premutated or large normal alleles, we separated digoxigenin labelled PCR products through denaturing poly-acrylamide gelelectrophoresis (PAGE) and transfered them to a nylon membrane using a gel dryer. The blotted PCR-fragments can easily be detected with alkaline phosphate-labelled anti-digoxigenin antibody. The number of trinucleotide repeat units can be determined by scoring the detected bands against a digoxigenated M13 sequencing ladder. Our newly developed digoxigenin/chemiluminescence approach using PCR and Southern blot analysis provides reliable results for routine detection of full fragile X mutations and premutations.  相似文献   

4.
The fragile X mental retardation syndrome is caused by an expansion of a trinucleotide repeat (CGG)n in the FMR-1 gene. Molecular genetic study of fragile X provides accurate diagnosis and facilitates genetic counseling in families with affected members. We present here the molecular study of 59 Spanish fragile X syndrome families using probe StB 12.3 and the polymerase chain reaction (PCR) of the (CGG)n repeat sequence of the FMR-1 gene. The results obtained have allowed us to characterize 455 individuals, including eight prenatal diagnoses. The clinical diagnosis of fragile X in 89 affected males was confirmed, 137 female carriers were identified (48 of whom were mentally retarded), 176 individuals at risk were found not to have the expansion, and 12 cases of normal transmitting males (NTM) were detected. In the sample studied, no de novo mutations were detected, nor any mutation different from that described for the (CGG)n expansion. One nonmentally retarded male was detected as having an unmethylated CpG island for the FMR-1 gene, but with more than 200 CGG repeats (high functioning male). The analysis of the (CGG)n repeat in 208 normal chromosomes gave an allele distribution similar to that in other Caucasoid population groups, with alleles of 29 and 30 CGG repeats accounting for 46% of the chromosomes. The combination of Southern analysis and PCR of the (CGG)n repeat is highly efficient for diagnosis, compared with cytogenetic techniques, especially in the detection of female carriers, NTMs, and prenatal diagnosis, enabling accurate genetic counseling to be provided in all cases.  相似文献   

5.
The fragile X syndrome is the second leading cause of mental retardation after Down syndrome. Fragile X premutations are not associated with any clinical phenotype but are at high risk of expanding to full mutations causing the disease when they are transmitted by a carrier woman. There is no reliable estimate of the prevalence of women who are carriers of fragile X premutations. We have screened 10,624 unselected women by Southern blot for the presence of FMR1 premutation alleles and have confirmed their size by PCR analysis. We found 41 carriers of alleles with 55-101 CGG repeats, a prevalence of 1/259 women (95% confidence interval 1/373-1/198). Thirty percent of these alleles carry an inferred haplotype that corresponds to the most frequent haplotype found in fragile X males and may indeed constitute premutations associated with a significant risk of expansion on transmission by carrier women. We identified another inferred haplotype that is rare in both normal and fragile X chromosomes but that is present on 13 (57%) of 23 chromosomes carrying FMR1 alleles with 53-64 CGG repeats. This suggests either (1) that this haplotype may be stable or (2) that the associated premutation-size alleles have not yet reached equilibrium in this population and that the incidence of fragile X syndrome may increase in the future.  相似文献   

6.
Fragile X syndrome results from mutations in a (CGG)n repeat found in the coding sequence of the FMR-1 gene. Analysis of length variation in this region in normal individuals shows a range of allele sizes varying from a low of 6 to a high of 54 repeats. Premutations showing no phenotypic effect in fragile X families range in size from 52 to over 200 repeats. All alleles with greater than 52 repeats, including those identified in a normal family, are meiotically unstable with a mutation frequency of one, while 75 meioses of alleles of 46 repeats and below have shown no mutation. Premutation alleles are also mitotically unstable as mosaicism is observed. The risk of expansion during oogenesis to the full mutation associated with mental retardation increases with the number of repeats, and this variation in risk accounts for the Sherman paradox.  相似文献   

7.
Absence of expression of the FMR-1 gene in fragile X syndrome   总被引:93,自引:0,他引:93  
We previously reported the isolation of a gene (FMR-1) expressed in brain at the fragile X locus. One exon of this gene lies within an EcoRI fragment that exhibits length variation in fragile X patients. This exon also contains the CGG repeat within the CpG island hypermethylated in fragile X patients. To study the involvement of the FMR-1 gene in the fragile X syndrome, its expression was studied in lymphoblastoid cell lines and leukocytes derived from patients and normal controls. FMR-1 mRNA was absent in the majority of male fragile X patients, suggesting a close involvement of this gene in development of the syndrome. Normal individuals and carriers all show expression. The methylation status of the BssHII site at the CpG island was also studied by Southern blot analysis of DNA from patients, carriers, and controls. The minority of fragile X affected males that show expression of FMR-1 demonstrated an associated incomplete methylation of the BssHII site.  相似文献   

8.
Fragile-X-syndrome (FXS) is the most common type of inherited cognitive impairment. The underlying molecular alteration consists of a CGG-repeat amplification within the FMR-1 gene. The phenotype is only apparent once a threshold in the number of repeats has been exceeded (full mutation). The aim of this study was to characterize the FMR-1 CGG-repeat status in Argentine patients exhibiting mental retardation. A total of 330 blood samples from patients were analyzed by PCR and Southern blot analysis. Initially, DNA from 78 affected individuals were studied by PCR. Since this method is unable to detect high molecular weight alleles, however, we undertook a second approach using the Southern blotting technique to analyze the CGG repeat number and methylation status. Southern blot analysis showed an altered pattern in 14 out of 240 (6%) unrelated patients, with half of them presenting a mosaic pattern. Eight out of 17 families (47%) showed a (suggest deleting highlight). The characteristic FXS pattern was identified in 8/17 families (47%), and in 4 of these families 25% of the individuals presented with a mosaic model. The expansion from pre-mutation to full mutation was shown to occur both at the pre and post zygotic levels. The detection of FXS mutations has allowed us to offer more informed genetic counseling, prenatal diagnosis and reliable patient follow-up.  相似文献   

9.
The fragile X phenotype has been found, in the majority of cases, to be due to the expansion of a CGG repeat in the 5'-UTR region of the FMR-1 gene, accompanied by methylation of the adjacent CpG island and inactivation of the FMR-1 gene. Although several important aspects of the genetics of fragile X have been resolved, it remains to be elucidated at which stage in development the transition from the premutation to the full mutation occurs. We present two families in which discordance between two sets of MZ twins illustrates two important genetic points. In one family, two affected MZ brothers differed in the number of CGG repeats, demonstrating in vivo mitotic instability of this CGG repeat and suggesting that the transition to the full mutation occurred postzygotically. In the second family, two MZ sisters had the same number of repeats, but only one was mentally retarded. When the methylation status of the FMR-1 CpG island was studied, we found that the majority of normal chromosomes had been inactivated in the affected twin, thus leading to the expression of the fragile X phenotype.  相似文献   

10.
Approximately 2%–5% of autistic children show cytogenetic evidence of the fragile X syndrome. This report tests whether infantile autism in multiplex autism families arises from an unusual manifestion of the fragile X syndrome. This could arise either by expansion of the (CGG)n trinucleotide repeat in FMR-1 or from a mutation elsewhere in the gene. We studied 35 families that met stringent criteria for multiplex autism. Amplification of the trinucleotide repeat and analysis of methylation status were performed in 79 autistic children and in 31 of their unaffected siblings, by Southern blot analysis. No examples of amplified repeats were seen in the autistic or control children or in their parents or grandparents. We next examined the hypothesis that there was a mutation elsewhere in the FMR-1 gene, by linkage analysis in 32 of these families. We tested four different dominant models and a recessive model. Linkage to FMR-1 could be excluded (lod score between −24 and −62) in all models by using probes DXS548, FRAXAC1, and FRAXAC2 and the CGG repeat itself. Tests for heterogeneity in this sample were negative, and the occurrence of positive lod scores in this data set could be attributed to chance. Analysis of the data by the affected-sib method also did not show evidence for linkage of any marker to autism. These results enable us to reject the hypothesis that multiplex autism arises from expansion of the (CGG)n trinucleotide repeat in FMR-1. Further, because the overall lod scores for all probes in all models tested were highly negative, linkage to FMR-1 can also be ruled out in multiplex autistic families.  相似文献   

11.
Fragile X syndrome, the most common inherited form of mental retardation, arises in individuals with more than 200 CGG repeats in the 5 untranslated region of the fragile X mental retardation 1 (FMR1) gene. Although CGG repeat numbers comparable to those found in the normal human population are found in various non-human primates, neither the within-species size variation nor the propensity for expansion of the CGG repeat has been described for any non-human primate species. The allele distribution has now been determined for FMR1 (homologue) CGG repeats of 265 unrelated founder females of Macaca mulatta monkeys. Among 530 X chromosomes, at least 26 distinct repeat lengths were identified, ranging from 16 to 54 CGG repeats. Of these alleles 79% have between 25 and 33 CGG repeats. Detailed examination of the CGG region revealed a conserved G (CGG)2 G interruption, although in no case was an AGG trinucleotide detected. Two animals carried borderline premutation alleles with 54 CGG repeats, within the region of marginal instability for humans. Thus, M. mulatta may be useful as an animal model for the study of fragile X syndrome.  相似文献   

12.
The fragile X syndrome (Fra-X) is the most common cause of inherited mental retardation with X-linked semi-dominant inheritance. The prevalence of Fra-X in the Mexican population is unknown. The aim of this population screening study was to determine if Fra-X or FRAXE mutations are the cause of a number of cases of mental retardation in a sample of Mexican children with mental retardation of unknown cause (MRUC) and to stress the importance of performing molecular analysis of the FMR-1 gene in all patients with MRUC. We report here the direct analysis of CGG and GCC repeats within the FMR-1 and FMR-2 genes, respectively, in 62 unrelated patients with MRUC. Two male index cases had the CGG expansion, although they did not express the Xq27.3 fragile site cytogenetically. Fra-X diagnosis was highly suspected on a clinical basis in one of the patients, but not in the other. Both mothers were found to be premutation carriers. The molecular studies of FMR-1 showed that the proportion of MRUC patients with Fra-X is 3.2%. This frequency was not significantly different to that reported in most populations. As reported in other series, no patients with FRAXE were found in our sample. Our findings confirm that the molecular analysis of the FMR-1 gene is necessary in MRUC patients to achieve unequivocal diagnosis of fragile X syndrome, carrier premutation detection and for accurate genetic counseling.  相似文献   

13.
The fragile X syndrome, the most common inherited form of mental retardation, is caused by the expansion of a CGGn trinucleotide repeat in the FMR-1 gene. Although the repeat number usually increases during transmission, few cases with reduction of an expanded CGGn repeat back to the normal size range have been reported. We describe for the first time a family in which such reduction has occurred in the paternal transmission. The paternal premutation (delta = 300 bp) was not detected in one of the five daughters or in the son of this daughter, although he had the grandpaternal RFLP haplotype. Instead, fragments indicating the normal CGGn repeat size were seen on a Southern blot probed with StB12.3. PCR analysis of the CGGn repeat confirmed this; in addition to a maternal allele of 30 repeats, an allele of 34 repeats was detected in the daughter and, further, in her son. Sequencing of this new allele revealed a pure CGGn repeat configuration without AGG interruptions. No evidence for a somatic mosaicism of a premutation allele in the daughter or a normal allele in her father was detected when investigating DNA derived from blood lymphocytes and skin fibroblasts. Another unusual finding in this family was lack of the PCR product of the microsatellite marker RS46 (DXS548) in one of the grandmaternal X chromosomes, detected as incompatible inheritance of RS46 alleles. The results suggest an intergenerational reduction in the CGGn repeat from premutation size to the normal size range and stable transmission of the contracted repeat to the next generation. However, paternal germ-line mosaicism could not be excluded as an alternative explanation for the reverse mutation.  相似文献   

14.
The Fragile X syndrome is, in the majority of cases, caused by CGG trinucleotide amplification within the FMR1 gene. The syndrome is rarely caused by point mutations or deletions. Here we describe a family with 2 sons and 1 daughter affected by Fragile X syndrome and 2 unaffected daughters whose carrier status was unknown prior to this study. Analysis of DNA from each of the 2 daughters revealed two alleles in the normal size range. However, 1 daughter carried one allele of 10 CGG repeats that was not present in either the mother or the father. No evidence for mosaicism could be detected. Haplotype analysis of flanking polymorphic markers revealed that the 10 CGG allele was derived from the mutated allele inherited from the mother. Thus, this case most likely represents an additional case of a reverse mutation from a premutation allele in a female to a normal-sized allele in the offspring. It remains unclear how frequently such reversion events occur. The observation has important consequences for genetic testing, because many laboratories prescreen for the Fragile X syndrome by determining the length of the CGG repeat using PCR. If this shows alleles in the normal size range, a diagnosis of Fragile X syndrome is considered to be excluded. Because the routine PCR and/or Southern blot analyses alone may yield false-negative results in cases of a regression of the number of CGG repeats, we strongly recommend the inclusion of fragment length or haplotype analysis when determining the carrier status within Fragile X syndrome families.  相似文献   

15.
Analysis of 139 mother-to-offspring transmissions of fragile X CGG triplet repeats revealed that the repeat expansion is enhanced in mother-to-son transmissions compared with mother-to-daughter transmissions. Evidence has been based on analysis of mother-offspring differences in the size of repeat (in kb), as well as on comparisons between proportions of male and female offspring with premutations, and full mutations, inherited from mothers carrying a premutation. Mean difference in the repeat size from mother-son transmissions was 1.45 kb, compared with mother-daughter transmissions of 0.76 kb. The difference is due primarily to a greater proportion of male than female offspring with full mutation from the premutation mothers and also to a higher frequency of reduction in repeat size from mothers to daughters than from mothers to sons. Our findings suggest the possibility of an interaction of the normal X homologue in a female zygote with the FMR1 sequence on the fragile X during replication to account for the lower level of expansion in mother-to-daughter transmissions relative to mother-to-son transmissions.  相似文献   

16.
Fragile-X syndrome, the most common inherited form of mental retardation, has a very unusual mode of inheritance. The disease is caused by a multistep expansion, in successive generations, of a polymorphic CGG repeat localized in a 5' exon of FMR-1, a gene of unknown function. Two main mutation types have been categorized. Premutations are moderate expansions of the repeat and do not cause mental retardation. Full mutations are found in affected individuals and involve larger expansions of the repeat, with abnormal methylation of the neighboring CpG island. The full mutations demonstrate striking somatic instability and extinguish expression of FMR-1. Premutations are changed to full mutation only when transmitted by a female with a frequency that increases up to 100% as a function of the initial size of the premutation. Direct detection of the mutations provides an accurate test for pre- and postnatal diagnosis of the disease, and for carrier detection. A similar unstable expansion of a trinucleotide repeat occurs in myotonic dystrophy.  相似文献   

17.
18.
The molecular mechanism of the fragile X syndrome is based on the expansion of an CGG repeat in the 5' UTR of the FMR1 gene in the majority of fragile X patients. This repeat displays instability both between individuals and within an individual. We studied the instability of the CGG repeat and the expression of the FMR1 protein (FMRP) in several different tissues derived from a male fragile X patient. Using Southern blot analysis, only a full mutation is detected in 9 of the 11 tissues tested. The lung tumor contains a methylated premutation of 160 repeats, whereas in the testis, besides the full mutation, a premutation of 60 CGG repeats is detected. Immunohistochemistry of the testis revealed expression of FMR1 in the spermatogonia only, confirming the previous finding that, in the sperm cells of fragile X patients with a full mutation in their blood cells, only a premutation is present. Immunohistochemistry of brain and lung tissue revealed that 1% of the cells are expressing the FMRP. PCR analysis demonstrated the presence of a premutation of 160 repeats in these FMR1-expressing cells. This indicates that the tumor was derived from a lung cell containing a premutation. Remarkably, despite the methylation of the EagI and BssHII sites, FMRP expression is detected in the tumor. Methylation of both restriction sites has thus far resulted in a 100% correlation with the lack of FMR1 expression, but the results found in the tumor suggest that the CpGs in these restriction sites are not essential for regulation of FMR1 expression. This indicates a need for a more accurate study of the exact promoter of FMR1.  相似文献   

19.
The fragile X syndrome is the result of amplification of a CGG trinucleotide repeat in the FMR1 gene and anticipation in this disease is caused by an intergenerational expansion of this repeat. Although regression of a CGG repeat in the premutation range is not uncommon, regression from a full premutation (>200 repeats) or premutation range (50–200 repeats) to a repeat of normal size (<50 repeats) has not yet been documented. We present here a family in which the number of repeats apparently regressed from approximately 110 in the mother to 44 in her daughter. Although the CGG repeat of the daughter is in the normal range, she is a carrier of the fragile X mutation based upon the segregation pattern of Xq27 markers flanking FMR1. It is unclear, however, whether this allele of 44 repeats will be stably transmitted, as the daughter has as yet no progeny. Nevertheless, the size range between normal alleles and premutation alleles overlap, a factor that complicates genetic counseling.  相似文献   

20.
At least nine human genetic diseases, including myotonic dystrophy (DM) and fragile X syndrome have been associated with the expansion of CTG or CGG trinucleotide repeats within the disease loci. Little is known about the molecular mechanisms or the genetic control of the expansion of triplet repeats. Mutations in human mismatch repair genes are associated with the increased polymorphism of many microsatellites, including dinucleotide repeats. The effect of mutations in two mismatch repair genes on the size of trinucleotide repeats in the DM and FRAXA loci has been analyzed. PCR and Southern analysis of the triplet repeat regions of the DM and fragile X mental retardation (FRAXA) loci in cell lines HTC116 and LoVo, which contain mutations in both alleles of the hMLH1 and hMSH2 genes, respectively, indicated that the size of the endogenous (CTG)n and (CGG)n tracts fall within the range observed in the normal population. This suggests that mutations in hMLH1 or hMSH2 do not result in the instability of CTG or CGG tracts to the levels observed in individuals with myotonic dystrophy or fragile X syndrome. Received: 4 December 1995 / Revised: 29 January 1996, 7 March 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号