首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allende D  McIntosh TJ 《Biochemistry》2003,42(4):1101-1108
Melittin is a small, cationic peptide that, like many other antimicrobial peptides, lyses cell membranes by acting on their lipid bilayers. However, the sensitivity to antimicrobial peptides varies among cell types. We have performed direct binding and vesicle leakage experiments to determine the sensitivity to melittin of bilayers composed of various physiologically relevant lipids, in particular, key components of eukaryotic membranes (cholesterol) and bacterial outer membranes (lipopolysaccharide or LPS). Melittin binds to bilayers composed of both zwitterionic and negatively charged phospholipids, as well as to the highly charged LPS bilayers. The magnitude of the free energy of binding (deltaG degrees ) increases with increasing bilayer charge density; deltaG degrees = -7.6 kcal/mol for phosphatidylcholine (PC) bilayers and -8.9 to -11.0 kcal/mol for negatively charged bilayers containing phosphatidylserine (PS), phospholipids with covalently attached polyethylene glycol (PEG-lipids), or LPS. Comparisons of these data show that binding is not markedly affected by the steric barrier produced by the PEG in PEG-lipids or by the polysaccharide core of LPS. The addition of equimolar cholesterol to PC bilayers reduces the level of binding (deltaG degrees = -6.4 kcal/mol) and reduces the extent of melittin-induced leakage by 20-fold. LPS and 1:1 PC/cholesterol bilayers have similar high resistance to melittin-induced leakage, indicating that cholesterol in eukaryotic plasma membranes and LPS in Gram-negative bacteria provide strong protection against the lytic effects of melittin. We argue that this resistance is due at least in part to the similar tight packing of the lipid acyl chains in PC/cholesterol and LPS bilayers. The addition of bacterial phospholipids to LPS bilayers increases their sensitivity to melittin, helping to explain the higher sensitivity of deep rough bacteria compared to smooth phenotypes.  相似文献   

2.
This review details how bilayer structural/elastic properties impact three distinct areas of biological significance. First, the partitioning of melittin into bilayers and melittin-induced bilayer leakage depended strongly on bilayer composition. The incorporation of cholesterol into phosphatidylcholine bilayers decreased melittin-induced leakage from 73 to 3%, and bilayers composed of lipopolysaccharide (LPS), the main lipid on the surface of Gram-negative bacteria, also had low (3%) melittin-induced leakage. Second, transbilayer peptides of different hydrophobic lengths were largely excluded from bilayer microdomains (“rafts”) enriched in sphingomyelin (SM) and cholesterol, even when the length of the transbilayer peptide domain matched the hydrocarbon thickness of the raft bilayer. This is likely due to the large area compressibility modulus of SM:cholesterol bilayers. Third, the major water barrier of skin, the extracellular lamellae of the stratum corneum, was found to contain tightly packed asymmetric lipid bilayers with cholesterol located preferentially on one side of the bilayer and a unique skin ceramide containing an unsaturated acyl chain on the opposite side. We argue that, in each of these three areas, key factors are differences in lipid hydrocarbon chain packing for different lipids, particularly the tight hydrocarbon chain packing caused by cholesterol’s strong interaction with saturated chains.  相似文献   

3.
Barrel-stave model or toroidal model? A case study on melittin pores   总被引:17,自引:0,他引:17       下载免费PDF全文
Transmembrane pores induced by amphiphilic peptides, including melittin, are often modeled with the barrel-stave model after the alamethicin pore. We examine this assumption on melittin by using two methods, oriented circular dichroism (OCD) for detecting the orientation of melittin helix and neutron scattering for detecting transmembrane pores. OCD spectra of melittin were systematically measured. Melittin can orient either perpendicularly or parallel to a lipid bilayer, depending on the physical condition and the composition of the bilayer. Transmembrane pores were detected when the helices oriented perpendicularly to the plane of the bilayers, not when the helices oriented parallel to the bilayers. The evidence that led to the barrel-stave model for alamethicin and that to the toroidal model for magainin were reviewed. The properties of melittin pores are closely similar to that of magainin but unlike that of alamethicin. We conclude that, among naturally produced peptides that we have investigated, only alamethicin conforms to the barrel-stave model. Other peptides, including magainins, melittin and protegrins, all appear to induce transmembrane pores that conform to the toroidal model in which the lipid monolayer bends continuously through the pore so that the water core is lined by both the peptides and the lipid headgroups.  相似文献   

4.
Melittin interactions with lipid bilayers and melittin formed pores are extensively studied to understand the mechanism of the toroidal pore formation. Early experimental studies suggested that melittin peptide molecules are anchored by their positively charged residues located next to the C-terminus to only one leaflet of the lipid bilayer (asymmetric arrangement). However, the recent non-linear spectroscopic experiment suggests a symmetric arrangement of the peptides with the C-terminus of the peptides anchored to both bilayers. Therefore, we present here a computational study that compares the effect of symmetric and asymmetric arrangements of melittin peptides in the toroidal pore formation. We also investigate the role of the peptide secondary structure during the pore formation. Two sets of the symmetric and asymmetric pores are prepared, one with a helical peptide from the crystal structure and the other set with a less helical peptide. We observe a stable toroidal pore being formed only in the system with a symmetric arrangement of the less helical peptides. Based on the simulation results we propose that the symmetric arrangement of the peptides might be more favorable than the asymmetric arrangement, and that the helical secondary structure is not a prerequisite for the formation of the toroidal pore.  相似文献   

5.
The free energy of transfer (DeltaG degrees ) from water to lipid bilayers was measured for two amphipathic peptides, the presequence of the mitochondrial peptide rhodanese (MPR) and melittin. Experiments were designed to determine the effects on peptide partitioning of the addition of lipids that produce structural modifications to the bilayer/water interface. In particular, the addition of cholesterol or the cholesterol analog 6-ketocholestanol increases the bilayer area compressibility modulus, indicating that these molecules modify lipid-lipid interactions in the plane of the bilayer. The addition of 6-ketocholestanol or lipids with attached polyethylene glycol chains (PEG-lipids) modify the effective thickness of the interfacial region; 6-ketocholestanol increases the width of hydrophilic headgroup region in the direction of the acyl chains whereas the protruding PEG chains of PEG-lipids increase the structural width of the headgroup region into the surrounding aqueous phase. The incorporation of PEG-lipids with PEG molecular weights of 2000 or 5000 had no appreciable effect on peptide partitioning that could not be accounted for by the presence of surface charge. However, for both MPR and melittin DeltaG degrees decreased linearly with increasing bilayer compressibility modulus, demonstrating the importance of bilayer mechanical properties in the binding of amphipathic peptides.  相似文献   

6.
Antimicrobial peptides often permeabilize biological membranes via a pore mechanism. Two pore types have been proposed: toroidal, where the pore is partly lined by lipid, and barrel-stave, where a cylindrical pore is completely lined by peptides. What drives the preference of antimicrobial peptides for a certain pore type is not yet fully understood. According to neutron scattering and oriented circular dichroism, melittin and MG-H2 induce toroidal pores whereas alamethicin forms barrel-stave pores. In previous work we found that indeed melittin seems to favor toroidal pores whereas alamethicin favors cylindrical pores. Here we designed mutants of these two peptides and the magainin analog MG-H2, aimed to probe how the distribution of charges along the helix and its imperfectly amphipathic structure influence pore formation. Molecular dynamics (MD) simulations of the peptides in a pre-formed cylindrical pore have been performed. The duration of the simulations was 136ns to 216ns. We found that a melittin mutant with lysine 7 neutralized favors cylindrical pores whereas a MG-H2 mutant with lysines in the N-terminal half of these peptides neutralized and an alamethicin mutant with a positive charge at the position 7 form semitoroidal pores. These results suggest that charged residues within the N-terminal half are important for toroidal pore formation. Toroidal pores produced by MG-H2 are more disordered than the melittin pores, likely because of the charged residues located in the middle of the MG-H2 helix (K11 and K14). Imperfect amphipathicity of melittin seems to play a role in its preference for toroidal pores since the substitutions of charged residues located within the nonpolar face by hydrophobic residues suppress evolution of a toroidal pore. The mutations change the position of lysine 7 near the N-terminus, relative to the lower leaflet headgroups. The MD simulations also show that the melittin P14A mutant forms a toroidal pore, but its configuration diverges from that of melittin and it is probably metastable.  相似文献   

7.
The conformation and dynamics of melittin bound to the dimyristoylphosphatidylcholine (DMPC) bilayer and the magnetic orientation in the lipid bilayer systems were investigated by solid-state (31)P and (13)C NMR spectroscopy. Using (31)P NMR, it was found that melittin-lipid bilayers form magnetically oriented elongated vesicles with the long axis parallel to the magnetic field above the liquid crystalline-gel phase transition temperature (T(m) = 24 degrees C). The conformation, orientation, and dynamics of melittin bound to the membrane were further determined by using this magnetically oriented lipid bilayer system. For this purpose, the (13)C NMR spectra of site-specifically (13)C-labeled melittin bound to the membrane in the static, fast magic angle spinning (MAS) and slow MAS conditions were measured. Subsequently, we analyzed the (13)C chemical shift tensors of carbonyl carbons in the peptide backbone under the conditions where they form an alpha-helix and reorient rapidly about the average helical axis. Finally, it was found that melittin adopts a transmembrane alpha-helix whose average axis is parallel to the bilayer normal. The kink angle between the N- and C-terminal helical rods of melittin in the lipid bilayer is approximately 140 degrees or approximately 160 degrees, which is larger than the value of 120 degrees determined by x-ray diffraction studies. Pore formation was clearly observed below the T(m) in the initial stage of lysis by microscope. This is considered to be caused by the association of melittin molecules in the lipid bilayer.  相似文献   

8.
Melittin, an amphiphathic peptide, affects the permeability of vesicles. This can be demonstrated using the dye release technique. Calcein, a fluorescent marker, is trapped in large unilamellar 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) vesicles and melittin-induced leakage of the dye can be monitored directly by increasing fluorescence intensity. First, we characterized the effect of increasing cholesterol content in the membrane on melittin-induced leakage and our results reveal that cholesterol inhibits the lytic activity of the peptide. Using intrinsic fluorescence of the single tryptophan of melittin and 2H-NMR of headgroup deuterated phosphatidylcholine, we demonstrated that the affinity of melittin for phosphatidylcholine vesicles is reduced in the presence of cholesterol; this is associated with the tighter lipid packing of the cholesterol-containing bilayer. This reduced binding is responsible for the reduced melittin-induced leakage from cholesterol-containing membranes. The pathway of release was determined to be an all-or-none mechanism. Finally, we investigated the possibility of achieving specific membrane targeting with melittin, when vesicles of different lipid composition are simultaneously present. Melittin incubated together with vesicles made of pure POPC and POPC containing 30(mol)% cholesterol can empty nearly all the cholesterol-free vesicles while the cholesterol-containing vesicles remain almost intact. Owing to the preferential interaction of melittin with the pure POPC vesicles, we were able to achieve controlled release of encapsulated material from a specific vesicle population. Received: 8 May 1996 / Accepted: 12 September 1996  相似文献   

9.
Dual-color fluorescence-burst analysis was used to study melittin-induced leakage of macromolecules from liposomes of various lipid compositions. To perform dual-color fluorescence-burst analysis, fluorescently labeled size-marker molecules were encapsulated into liposomes, labeled with a second lipid-attached fluorophore. By correlating the fluorescence bursts, resulting from the liposomes diffusing through the detection volume of a dual-color confocal microscope, the distribution of size-marker molecules over the liposomes was determined. It was found that melittin causes leakage via two different mechanisms: 1), For liposomes composed of neutral bilayer-forming lipids, low melittin concentrations induced pore formation with the pore size depending on the melittin concentration. 2), For liposomes containing anionic and/or nonbilayer forming lipids, melittin induced fusion or aggregation of liposomes accompanied by a-specific leakage. Experiments with liposomes prepared from Escherichia coli lipid extracts and intact cells of Lactococcus lactis indicate that both mechanisms are physiologically relevant.  相似文献   

10.
The incorporation and accumulation of a certain amount of short-chain phosphatidylcholine or lysophosphatidylcholine into lipid bilayers of erythrocyte membranes is the first step causing membrane perturbation in the process of hemolysis. Accumulation of dilauroylglycerophosphocholine into membranes makes human erythrocytes "permeable cells"; Ions such as Na+ or K+ can permeate through the membrane, though large molecules such as hemoglobin can not. The "pore" formation was partially reproduced in liposomes prepared from lipids extracted from human erythrocyte membranes; C12:0PC induced the release of glucose from liposomes but did not significantly induce the release of dextran. It was suggested that the phase boundary between dilauroylglycerophosphocholine and the host membrane bilayer or dilauroylglycerophosphocholine rich domain itself behaves as "pores." Erythrocytes could expand to 1.5 times the original cell volume without any appreciable hemolysis when incubated with C12:0PC at 37 degrees C. The capacity of the erythrocytes to expand was temperature dependent. The capacity may play an important role in the resistance of the cells against lysis. The "permeable cell" stage could be hardly observed when erythrocytes were treated with didecanoylglycerophosphocholine and lysophosphatidylcholine. Perturbation induced by accumulation of didecanoylglycerophosphocholine or lysophosphatidylcholine may cause non specific destruction of membranes rather than formation of a kind of "pore."  相似文献   

11.
Protein- and peptide-induced lipid extraction from membranes is a critical process for many biological events, including reverse cholesterol transport and sperm capacitation. In this work, we examine whether such processes could display specificity for some lipid species. Melittin, the main component of dry bee venom, was used as a model amphipathic α-helical peptide. We specifically determined the modulation of melittin-induced lipid extraction from membranes by the change of the methylation level of phospholipid headgroups. Phosphatidylcholine (PC) bilayers were demethylated either by substitution with phosphatidylethanolamine (PE) or chemically by using mono- and dimethylated PE. It is shown that demethylation reduces the association of melittin with membranes, likely because of the resulting tighter chain packing of the phospholipids, which reduces the capacity of the membranes to accommodate inserted melittin. This reduced binding of the peptide is accompanied by an inhibition of the lipid extraction caused by melittin. We demonstrate that melittin selectively extracts PC from PC/PE membranes. This selectivity is proposed to be a consequence of a PE depletion in the surroundings of bound melittin to minimize disruption of the interphospholipid interactions. The resulting PC-enriched vicinity of melittin would be responsible for the observed formation of PC-enriched lipid/peptide particles resulting from the lipid efflux. These findings reveal that modulating the methylation level of phospholipid headgroups is a simple way to control the specificity of lipid extraction from membranes by peptides/proteins and thereby modulate the lipid composition of the membranes.  相似文献   

12.
Phosphorus NMR spectroscopy was used to characterize the importance of electrostatic interactions in the lytic activity of melittin, a cationic peptide. The micellization induced by melittin has been characterized for several lipid mixtures composed of saturated phosphatidylcholine (PC) and a limited amount of charged lipid. For these systems, the thermal polymorphism is similar to the one observed for pure PC: small comicelles are stable in the gel phase and extended bilayers are formed in the liquid crystalline phase. Vesicle surface charge density influences strongly the micellization. Our results show that the presence of negatively charged lipids (phospholipid or unprotonated fatty acid) reduces the proportion of lysed vesicles. Conversely, the presence of positively charged lipids leads to a promotion of the lytic activity of the peptide. The modulation of the lytic effect is proposed to originate from the electrostatic interactions between the peptide and the bilayer surface. Attractive interactions anchor the peptide at the surface and, as a consequence, inhibit its lytic activity. Conversely, repulsive interactions favor the redistribution of melittin into the bilayer, causing enhanced lysis. A quantitative analysis of the interaction between melittin and negatively charged bilayers suggests that electroneutrality is reached at the surface, before micellization. The surface charge density of the lipid layer appears to be a determining factor for the lipid/peptide stoichiometry of the comicelles; a decrease in the lipid/peptide stoichiometry in the presence of negatively charged lipids appears to be a general consequence of the higher affinity of melittin for these membranes.  相似文献   

13.
The effects of the lytic peptides, melittin and δ-haemolysin, are compared in vesicles of gel-phase dipalmitoylphosphatidylcholine (DPPC), using calcein as trapped marker. At low concentration, both toxins cause vesicles to lose contents in 5 mM phosphate buffer near neutral pH, with melittin being the more active. As phosphate concentration is increased, the kinetics of melittin-induced leakage change from a slow, sustained loss to a rapid ‘burst’ of leakage when melittin is present mainly as tetramer in solution, under conditions where it is reported to lose haemolytic activity towards erythrocytes. At low phosphate concentration, the leakage induced by δ-haemolysin is preceded by a lag phase, though fluorescence measurements show that binding of toxin is rapid. At higher phosphate concentration, the toxin binds rapidly to vesicles, but causes no leakage of entrapped calcein. Steady-state fluorescence spectra show no obvious differences in tryptophan emission for δ-haemolysin bound to lipid in high- or low-phosphate buffer. Spin-label fluorescence-quenching studies show that the single tryptophan residue of δ-haemolysin is buried within the lipid bilayer at all phosphate concentrations used. In gel-phase DPPC, δ-haemolysin shows no tendency to cause vesicle aggregation over several hours, as judged by light scattering, though a slow non-linear effect is seen above the lipid phase transition temperature. These effects are contrasted with those of melittin under similar conditions.  相似文献   

14.
Energetics of pore formation induced by membrane active peptides   总被引:8,自引:0,他引:8  
Lee MT  Chen FY  Huang HW 《Biochemistry》2004,43(12):3590-3599
Antimicrobial peptides are known to form pores in cell membranes. We study this process in model bilayers of various lipid compositions. We use two of the best-studied peptides, alamethicin and melittin, to represent peptides making two types of pores, that is, barrel-stave pores and toroidal pores. In both cases, the key control variable is the concentration of the bound peptides in the lipid bilayers (expressed in the peptide-lipid molar ratio, P/L). The method of oriented circular dichroism (OCD) was used to monitor the peptide orientation in bilayers as a function of P/L. The same samples were scanned by X-ray diffraction to measure the bilayer thickness. In all cases, the bilayer thickness decreases linearly with P/L and then levels off after P/L exceeds a lipid-dependent critical value, (P/L)*. OCD spectra showed that the helical peptides are oriented parallel to the bilayers as long as P/L < (P/L)*, but as P/L increases over (P/L)*, an increasing fraction of peptides changed orientation to become perpendicular to the bilayer. We analyzed the data by assuming an internal membrane tension associated with the membrane thinning. The free energy containing this tension term leads to a relation explaining the P/L-dependence observed in the OCD and X-ray diffraction measurements. We extracted the experimental parameters from this thermodynamic relation. We believe that they are the quantities that characterize the peptide-lipid interactions related to the mechanism of pore formation. We discuss the meaning of these parameters and compare their values for different lipids and for the two different types of pores. These experimental parameters are useful for further molecular analysis and are excellent targets for molecular dynamic simulation studies.  相似文献   

15.
We describe the binding of proteins to lipid bilayers in the case for which binding can occur either by adsorption to the lipid bilayer membrane-water interface or by direct insertion into the bilayer itself. We examine in particular the case when the insertion and pore formation are driven by the adsorption process using scaled particle theory. The adsorbed proteins form a two-dimensional "surface gas" at the lipid bilayer membrane-water interface that exerts a lateral pressure on the lipid bilayer membrane. Under conditions of strong intrinsic binding and a high degree of interfacial converge, this pressure can become high enough to overcome the energy barrier for protein insertion. Under these conditions, a subtle equilibrium exists between the adsorbed and inserted proteins. We propose that this provides a control mechanism for reversible insertion and pore formation of proteins such as melittin and magainin. Next, we discuss experimental data for the binding isotherms of cytochrome c to charged lipid membranes in the light of our theory and predict that cytochrome c inserts into charged lipid bilayers at low ionic strength. This prediction is supported by titration calorimetry results that are reported here. We were furthermore able to describe the observed binding isotherms of the pore-forming peptides endotoxin (alpha 5-helix) and of pardaxin to zwitterionic vesicles from our theory by assuming adsorption/insertion equilibrium.  相似文献   

16.
The bee venom constituent, melittin, is structurally and functionally related to alamethicin. By forming solvent-free planar bilayers of small area (approx. 100 microns 2) on the tip of fire-polished glass pipettes we could observe single melittin pores in these membranes. An increase in the applied voltage induced further non-integral conductance levels. This indicates that melittin forms multi-level pores similar to those formed by alamethicin. Trichotoxin A40, an antibiotic analogue of alamethicin, also induces a voltage-dependent bilayer conductivity, but no stable pore states are resolved. However, chemical modification of the C-terminal molecule part by introduction of a dansyl group leads to a steeper voltage-dependence and pore state stabilization. Comparing structure and activity of several natural and synthetic amphiphilic polypeptides, we conclude that a lipophilic, N-terminal alpha-helical part of adequate length (dipole moment) and a large enough hydrophilic, C-terminal region are sufficient prerequisites for voltage-dependent formation of multi-state pores.  相似文献   

17.
The cytotoxic cell granule secretory pathway is essential for host defense. This pathway is fundamentally a form of intracellular protein delivery where granule proteases (granzymes) from cytotoxic lymphocytes are thought to diffuse through barrel stave pores generated in the plasma membrane of the target cell by the pore forming protein perforin (PFN) and mediate apoptotic as well as additional biological effects. While recent electron microscopy and structural analyses indicate that recombinant PFN oligomerizes to form pores containing 20 monomers (20 nm) when applied to liposomal membranes, these pores are not observed by propidium iodide uptake in target cells. Instead, concentrations of human PFN that encourage granzyme-mediated apoptosis are associated with pore structures that unexpectedly favor phosphatidylserine flip-flop measured by Annexin-V and Lactadherin. Efforts that reduce PFN mediated Ca influx in targets did not reduce Annexin-V reactivity. Antigen specific mouse CD8 cells initiate a similar rapid flip-flop in target cells. A lipid that augments plasma membrane curvature as well as cholesterol depletion in target cells enhance flip-flop. Annexin-V staining highly correlated with apoptosis after Granzyme B (GzmB) treatment. We propose the structures that PFN oligomers form in the membrane bilayer may include arcs previously observed by electron microscopy and that these unusual structures represent an incomplete mixture of plasma membrane lipid and PFN oligomers that may act as a flexible gateway for GzmB to translocate across the bilayer to the cytosolic leaflet of target cells.  相似文献   

18.
C E Dempsey  A Watts 《Biochemistry》1987,26(18):5803-5811
The interaction of bee venom melittin with dimyristolphosphatidylcholine (DMPC) selectively deuteriated in the choline head group has been studied by deuterium and phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. The action of residual phospholipase A2 in melittin samples resulted in mixtures of DMPC and its hydrolytic products that underwent reversible transitions at temperatures between 30 and 35 degrees C from extended bilayers to micellar particles which gave narrow single-line deuterium and phosphorus-31 NMR spectra. Similar transitions were observed in DMPC-myristoyllysophosphatidylcholine (lysoPC)-myristic acid mixtures containing melittin but not in melittin-free mixtures, indicating that melittin is able to stabilize extended bilayers containing DMPC and its hydrolytic products in the liquid-crystalline phase. Melittin, free of phospholipase A2 activity, and at 3-5 mol% relative to DMPC, induced reversible transitions between extended bilayers and micellar particles on passing through the liquid-crystalline to gel phase transition temperature of the lipid, effects similar to those observed in melittin-acyl chain deuterated dipalmitoylphosphatidylcholine (DPPC) mixtures [Dufourc, E. J., Smith, I. C. P., & Dufourcq, J. (1986) Biochemistry 25, 6448-6455]. LysoPC at concentrations of 20 mol% or greater relative to DMPC induced transitions between extended bilayers and micellar particles with characteristics similar to those induced by melittin. It is proposed that these melittin- and lysoPC-induced transitions share similar mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
14C-Labeled phosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) species with two homologous saturated acyl chains and of a saturated acyl chain of various lengths, respectively, were each incorporated into the outer leaflet of the membrane lipid bilayer of intact human erythrocytes, and the transbilayer movement into the inner leaflet during incubation at 37 degrees C of the lipid-loaded erythrocytes was followed. The labeled PC and lysoPC molecules present in the outer leaflet were extracted with egg-yolk PC liposome suspension and BSA solution, respectively, and the amount which moved into the inner leaflet during the incubation was measured by determining the residual amount of the labeled lipid in the membrane. Translocation of lysoPC molecules was also measured by assaying the decrease in the amount of the added labeled lysoPC in the membrane during the incubation on the basis of the previously reported fact that lysoPC molecules are all converted metabolically to PC or glycerylphosphorylcholine plus fatty acid as soon as they are translocated from the outer to the inner leaflet. Every lipid tested showed significant transbilayer movement during the course of the incubation for up to 10 h. With the C8, C10, and C12 species of PC the rate of the transbilayer movement increases with decreasing acyl chain length. The same is true with the C14, C16, and C18-lysoPC species.  相似文献   

20.
The interaction of three vitamin A derivatives or retinoids: all-trans-retinoic acid, 13-cis-retinoic acid and retinol with multilamellar phospholipid bilayers was studied using a combination of 2H- and 31P-NMR measurements. The following model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers; (2) bilayers composed of a mixture of DPPC and bovine heart phosphatidylcholine (PC); (3) mixed PC/phosphatidylethanolamine (PE) bilayers. Only a weak interaction was observed between 13-cis-retinoic acid and DPPC membranes. Addition of all-trans-retinoic acid at a molar ratio of 1:2 to the lipid causes a small decrease (5 C degrees) in the gel to liquid crystalline phase-transition temperature of DPPC, a small increase in the order parameters of the lipid side-chains of single component bilayers and no measurable effect in the other lipid systems studied. Considerably larger perturbation in the lipid bilayer structure is introduced by addition of retinol which, at a molar ratio of 1:2 to the lipid, lowered the gel to liquid crystalline phase-transition temperature of DPPC by 21 C degrees and caused a decrease of order parameters of the lipid side-chains in all three lipid bilayer systems. These effects are consistent with intercalation of retinol molecules into the bilayer interior. The results for the mixed PC/PE bilayers indicate that the presence of retinol caused lateral separation of PE- and retinol-enriched regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号