首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
B. D. McKee  M. T. Satter 《Genetics》1996,142(1):149-161
The structure of the Suppressor of Stellate [Su(Ste)] locus on the Drosophila melanogaster Y chromosome was examined by restriction analysis of both native and cloned genomic DNA. The locus consists of short subarrays of tandem repeats separated by members of other moderately repeated families. Both size variants and restriction variants proved to be common. Most repeats fell into two size classes--2.8 and 2.5 kb--but other size variants were also observed. Restriction variants showed a strong tendency to cluster, both at the gross level where some variants were present in only one of three subintervals of the locus, and at the fine level, where repeats from the same phage clone were significantly more similar than repeats from different clones. Restriction variants were shared freely among repeats of different size classes; however, size variants appeared to be randomly distributed among phage clones. These data indicate that recombination among tandem Su(Ste) repeats occurs at much higher frequencies between close neighbors than distant ones. In addition, they suggest that gene conversion rather than sister chromatid exchange may be the primary recombinational mechanism for spreading variation among repeats at the Su(Ste) locus.  相似文献   

4.
5.
6.
Here we report the peculiarities of molecular evolution and divergence of paralogous heterochromatic clusters of the testis- expressed X-linked Stellate and Y-linked Su(Ste) tandem repeats. It was suggested that Stellate and Su(Ste) clusters affecting male fertility are the amplified derivatives of the unique euchromatic gene betaCK2tes encoding the putative testis-specific beta-subunit of protein kinase CK2. The putative Su(Ste)-like evolutionary intermediate was detected on the Y chromosome as an orphon outside of the Su(Ste) cluster. The orphon shows extensive homology to the Su(Ste) repeat, but contains several Stellate-like diagnostic nucleotide substitutions, as well as a 10-bp insertion and a 3' splice site of the first intron typical of the Stellate unit. The orphon looks like a pseudogene carrying a drastically damaged Su(Ste) open reading frame (ORF). The putative Su(Ste) ORF, as compared with the Stellate one, carries numerous synonymous substitutions leading to the major codon preference. We conclude that Su(Ste) ORFs evolved on the Y chromosome under the pressure of translational selection. Direct sequencing shows that the efficiency of concerted evolution between adjacent repeats is 5-10 times as high in the Stellate heterochromatic cluster on the X chromosome as that in the Y-linked Su(Ste) cluster, judging by the frequencies of nucleotide substitutions and single-nucleotide deletions.  相似文献   

7.
Y. Y. Shevelyov 《Genetics》1992,132(4):1033-1037
Two variants of X chromosome Stellate genes responsible for crystal formation in XO male primary spermatocytes occupy different genome positions. The majority if not all of the 1250-bp Stellate genes are located at the 12E site where the Ste locus has been mapped and almost all of the 1150-bp Stellate repeats are concentrated in the distal X heterochromatin. Sequencing of Stellate genes derived from X heterochromatin reveals the preservation of their open reading frames and precise matching with some Stellate cDNAs reported earlier. At least some heterochromatic Stellate genes are suggested to be expressed and, therefore, involved in the interaction with the Y chromosome locus Su(Ste), as are the Stellate genes from 12E.  相似文献   

8.
9.
10.
Stapleton W  Das S  McKee BD 《Chromosoma》2001,110(3):228-240
The homeless gene of Drosophila melanogaster encodes a member of the DE-H family of ATPase and RNA helicase proteins. Loss-of-function homeless mutations were previously found to cause female sterility with numerous defects in oogenesis, including improper formation of both the anterior-posterior and dorsal-ventral axes and failure to transport and localize key RNAs required for axis formation. One homeless mutation was also found to affect male meiosis, causing elevated X-Y nondisjunction. Here we further analyze the role of homeless in male meiosis. We show that homeless mutations cause a variety of defects in male meiosis including nondisjunction of the X-Y and 2-2 pair, Y chromosome marker loss, meiotic drive, chromosome fragmentation, chromatin bridges at anaphase, and tripolar meiosis. In addition, homeless mutations interact with an X chromosomal factor to cause complete male sterility. These phenotypes are similar to those caused by deletion of the Suppressor of Stellate [Su(Ste)] locus. Like Su(Ste) deficiencies, homeless mutants also exhibit crystals in primary spermatocytes and derepression of the X-linked Stellate locus. To determine whether the regulatory role of hls is specific for Stellate or includes other repeated sequences as well, we compared testis RNA levels for nine transposable elements and found that all but one, copia, were expressed at the same levels in hls mutants and wild type. Copia, however, was strongly derepressed in hls mutant males. We conclude that hls functions along with Su(Ste) and other recently described genes to repress the Stellate locus in spermatocytes, and that it may also play a role in repressing certain other repeated sequences.  相似文献   

11.
12.
13.
X-chromosome inactivation, which occurs in female eutherian mammals is controlled by a complex X-linked locus termed the X-inactivation center (XIC). Previously it was proposed that genes of the XIC evolved, at least in part, as a result of pseudogenization of protein-coding genes. In this study we show that the key XIC gene Xist, which displays fragmentary homology to a protein-coding gene Lnx3, emerged de novo in early eutherians by integration of mobile elements which gave rise to simple tandem repeats. The Xist gene promoter region and four out of ten exons found in eutherians retain homology to exons of the Lnx3 gene. The remaining six Xist exons including those with simple tandem repeats detectable in their structure have similarity to different transposable elements. Integration of mobile elements into Xist accompanies the overall evolution of the gene and presumably continues in contemporary eutherian species. Additionally we showed that the combination of remnants of protein-coding sequences and mobile elements is not unique to the Xist gene and is found in other XIC genes producing non-coding nuclear RNA.  相似文献   

14.
Testis-specific expression of tandemly repeated Stellate genes, located in eu- and heterochromatin regions of the X chromosome of Drosophila melanogaster, is suppressed by homologous Suppressor of Stellate repeats located on the Y chromosome. Using transgenic lines, we have demonstrated that three Su(Ste) copies failed to change the expression of the reporter construction carrying the bacterial beta-galactosidase gene under control of the Stellate gene regulatory sequence. Possible mechanisms of the Su(Ste) repeat suppressor activity are discussed.  相似文献   

15.
16.
17.
Genetic Analysis of Stellate Elements of Drosophila Melanogaster   总被引:3,自引:1,他引:2       下载免费PDF全文
Repeated elements are remarkably important for male meiosis and spermiogenesis in Drosophila melanogaster. Pairing of the X and Y chromosomes is mediated by the ribosomal RNA genes of the Y chromosome and X chromosome heterochromatin, spermiogenesis depends on the fertility factors of the Y chromosome. Intriguingly, a peculiar genetic system of interaction between the Y-linked crystal locus and the X-linked Stellate elements seem to be also involved in male meiosis and spermiogenesis. Deletion of the crystal element of the Y, via an interaction with the Stellate elements of the X, causes meiotic abnormalities, gamete-genotype dependent failure of sperm development (meiotic drive), and deposition of protein crystals in spermatocytes. The current hypothesis is that the meiotic abnormalities observed in cry(-) males is due to an induced overexpression of the normally repressed Ste elements. An implication of this hypothesis is that the strength of the abnormalities would depend on the amount of the Ste copies. To test this point we have genetically and cytologically examined the relationship of Ste copy number and organization to meiotic behavior in cry(-) males. We found that heterochromatic as well as euchromatic Ste repeats are functional and that the abnormality in chromosome condensation and the frequency of nondisjunction are related to Ste copy number. Moreover, we found that meiosis is disrupted after synapsis and that cry-induced meiotic drive is probably not mediated by Ste.  相似文献   

18.
Identification of genes that are associated with DNA repeats in prokaryotes   总被引:38,自引:0,他引:38  
Using in silico analysis we studied a novel family of repetitive DNA sequences that is present among both domains of the prokaryotes (Archaea and Bacteria), but absent from eukaryotes or viruses. This family is characterized by direct repeats, varying in size from 21 to 37 bp, interspaced by similarly sized non-repetitive sequences. To appreciate their characteri-stic structure, we will refer to this family as the clustered regularly interspaced short palindromic repeats (CRISPR). In most species with two or more CRISPR loci, these loci were flanked on one side by a common leader sequence of 300-500 b. The direct repeats and the leader sequences were conserved within a species, but dissimilar between species. The presence of multiple chromosomal CRISPR loci suggests that CRISPRs are mobile elements. Four CRISPR-associated (cas) genes were identified in CRISPR-containing prokaryotes that were absent from CRISPR-negative prokaryotes. The cas genes were invariably located adjacent to a CRISPR locus, indicating that the cas genes and CRISPR loci have a functional relationship. The cas3 gene showed motifs characteristic for helicases of the superfamily 2, and the cas4 gene showed motifs of the RecB family of exonucleases, suggesting that these genes are involved in DNA metabolism or gene expression. The spatial coherence of CRISPR and cas genes may stimulate new research on the genesis and biological role of these repeats and genes.  相似文献   

19.
The 30-kb cluster comprising close to 20 copies of tandemly repeated Stellate genes was localized in the distal heterochromatin of the X chromosome. Of 10 sequenced genes, nine contain undamaged open reading frames with extensive similarity to protein kinase CK2 β-subunit; one gene is interrupted by an insertion. The heterochromatic array of Stellate repeats is divided into three regions by a 4.5-kb DNA segment of unknown origin and a retrotransposon insertion: the A region (~14 Stellate genes), the adjacent B region (approximately three Stellate genes), and the C region (about four Stellate genes). The sequencing of Stellate copies located along the discontinuous cluster revealed a complex pattern of diversification. The lowest level of divergence was detected in nearby Stellate repeats. The marginal copies of the A region, truncated or interrupted by an insertion, escaped homogenization and demonstrated high levels of divergence. Comparison of copies in the B and C regions, which are separated by a retrotransposon insertion, revealed a high level of diversification. These observations suggest that homogenization takes place in the Stellate cluster, but that inserted sequences may impede this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号