首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Gonadal steroids affect a wide variety of functions in the mammalian brain ranging from the regulation of neuroendocrine systems and the modulation of behavior to the stimulation of differentiation and plasticity of distinct neuronal populations and circuits. The last decades have also demonstrated that estrogen serves as a neuroprotective factor for distinct neurodegenerative disorders. Such neuroprotective effects of estrogen are most obvious for Parkinson's and Alzheimer's disease. Despite this knowledge, little is known about the mechanisms and cellular targets by that estrogen might elicit its protective influence. In the past, we have intensively studied the effects of estrogen on midbrain dopaminergic neurons which represent the most affected cell population during Parkinson's disease. These studies were mainly performed on developing dopaminergic cells and revealed that estrogen is an important regulator of plasticity and function of this neuronal phenotype. Precisely, we found that dopaminergic neurons are direct targets for estrogen and that estrogen stimulates neurite extension/branching and the expression of tyrosine hydroxylase, the key enzyme in dopamine synthesis. Together with other in vivo studies, we might draw the conclusion that estrogen is required for the plasticity and activity of the developing and adult nigrostriatal system. The presence of the estrogen-synthesizing enzyme aromatase within the nigrostriatal system further supports this idea. Surprisingly, estrogen effects on nigrostriatal cell function are not only transmitted by classical nuclear estrogen receptors but also depend on nonclassical estrogen actions mediated through putative membrane receptors coupled to diverse intracellular signaling cascades. In the future, it has to be elucidated whether nonclassical mechanisms besides genomic actions also contribute to estrogen-mediated neuroprotection in the adult CNS.  相似文献   

10.
Several in vitro and in vivo studies have shown that estrogen has neuroprotective properties. The neuroprotective effects of estrogen are probably exerted through several mechanisms. It is established that estrogen can provide neuroprotection by actions that are independent of estrogen receptor activation. In addition, in several experimental models, activation of estrogen receptors appears to be indispensable for neuroprotection. This review focuses on neuroprotection mediated by estrogen receptors. The interaction of estrogen with growth factor receptor signaling to induce neuroprotection is discussed. Evidence is presented that estrogen receptors and insulin-like growth factor-I receptors interact in the promotion of neuronal survival and neuroprotection.  相似文献   

11.
12.
13.
14.
雌激素受体与神经系统疾病   总被引:2,自引:0,他引:2  
王玉霞  鲁亚平 《生物学杂志》2010,27(3):79-80,112
雌激素受体是类固醇激素受体超家族成员之一,是一种配体依赖性转录因子,具有广泛的生物学功能。雌激素受体在脑内具有广泛的分布,且与一些神经系统疾病的发生发展相关。就雌激素受体在脑内的分布及其与神经系统疾病的关系进行论述。  相似文献   

15.
16.
Discovery of estrogen receptors (ER) in the central nervous system and the ability of estrogens to modulate neural circuitry and act as neurotrophic factors, suggest a therapeutic role of this steroid. To gain better understanding of the specificity and cellular mechanisms involved in estrogen-mediated neuroprotection, a mouse hippocampal neuronal cell line (HT22) was evaluated. Earlier reports indicated this cell line was devoid of ERs. Contrary to these findings, characterization of HT22 cells using RT-PCR, immunoblot, immunocytochemical, and radioligand binding techniques revealed endogenous expression of ER. The predominant subtype appeared to be ERalpha with functional activity confirmed using an ERE-tk-luciferase assay. The ability of an ER antagonist, ICI-182780, to block the neuroprotective effects of estrogens confirmed ER was involved mechanistically in neuroprotection. In conclusion, HT22 cells express functional ERalpha or a closely related ER enabling this cell line to be used to profile estrogens for neuroprotective properties acting via an ER-dependent mechanism.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号