首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang B  Chi G  Chen X  Shi Y 《Bioresource technology》2011,102(21):10154-10157
The performance of acetic acid-supported pH-heterogenized heterotrophic denitrification (HD) facilitated with ferrous sulfide-based autotrophic denitrification (AD) was investigated in upflow activated carbon-packed column reactors for reliable removal of highly elevated nitrate (42 mg NO3-N l−1) in drinking water. The use of acetic acid as substrate provided sufficient internal carbon dioxide to completely eliminate the need of external pH adjustment for HD, but simultaneously created vertically heterogenized pH varying from 4.8 to 7.8 in the HD reactor. After 5-week acclimation, the HD reactor developed a moderate nitrate removal capacity with about one third of nitrate removal occurring in the acidic zone (pH 4.8–6.2). To increase the treatment reliability, acetic acid-supported HD was operated under 10% carbon limitation to remove >85% of nitrate, and ferrous sulfide-based AD was supplementally operated to remove residual nitrate and formed nitrite without excess of soluble organic carbon, nitrite or sulfate in the final effluent.  相似文献   

2.
Nitrate (NO3) loss from agriculture to shallow groundwater and transferral to sensitive aquatic ecosystems is of global concern. Denitrifying bioreactor technology, where a solid carbon (C) reactive media intercepts contaminated groundwater, has been successfully used to convert NO3 to di-nitrogen (N2) gas. One of the challenges of groundwater remediation research is how to track denitrification potential spatially and temporally within reactive media and subsoil. First, using δ15N/δ18O isotopes, eight wells were divided into indicative transformational processes of ‘nitrification’ or ‘denitrification’ wells. Then, using N2/argon (Ar) ratios these wells were divided into ‘low denitrification potential’ or high denitrification potential’ categories. Secondly, using falling head tests, the saturated hydraulic conductivity (Ksat) in each well was estimated, creating two groups of ‘slow’ (0.06 m day−1) and ‘fast’ (0.13 m day−1) wells, respectively. Thirdly, two ‘low denitrification potential’ wells (one fast and one slow) with high NO3 concentration were amended with woodchip to enhance denitrification. Water samples were retrieved from all wells using a low flow syringe to avoid de-gassing and analysed for N2/Ar ratio using membrane inlet mass spectrometry. Results showed that there was good agreement between isotope and chemical (N2/Ar ratio and dissolved organic C (DOC)) and physio-chemical (dissolved oxygen, temperature, conductivity and pH) parameters. To explain the spatial and temporal distribution of NO3 and other parameters on site, the development of predictive models using the available datasets for this field site was examined for NO3, Cl, N2/Ar and DOC. Initial statistical analysis was directed towards the testing of the effect of woodchip amendment. The analysis was formulated as a repeated measures analysis of the factorial structure for treatment and time. Nitrate concentrations were related to Ksat and water level (p < 0.0001 and p = 0.02, respectively), but did not respond to woodchip addition (p = 0.09). This non-destructive technique allows elucidation of denitrification potential over time and could be used in denitrifying bioreactor technology to assess denitrification hotspots in reactive media, while developing a NO3 spatial and temporal predictive model for bioreactor site specific conditions.  相似文献   

3.
Hydrogenotrophic denitrification was demonstrated using hydrogen generated from anoxic corrosion of metallic iron. For this purpose, a mixture of hydrogenated water and nitrate solution was used as reactor feed. A semi-batch reactor with nitrate loading of 2000 mg m−3 d−1 and hydraulic retention time (HRT) of 50 days produced effluent with nitrate concentration of 0.27 mg N L−1 (99% nitrate removal). A continuous flow reactor with nitrate loading of 28.9 mg m−3 d−1 and HRT of 15.6 days produced effluent with nitrate concentration of ∼0.025 mg N L−1 (95% nitrate removal). In both cases, the concentration of nitrate degradation by-products, viz., ammonia and nitrite, were below detection limits. The rate of denitrification in the reactors was controlled by hydrogen availability, and hence to operate such reactors at higher nitrate loading rates and/or lower HRT than reported in the present study, hydrogen concentration in the hydrogenated water must be significantly increased.  相似文献   

4.
A new method based on sulfide utilizing autotrophic denitrification was adopted to remove nitrate from wastewater and to reuse spent sulfidic caustic containing high sulfide and alkalinity levels. The experiments were performed using a bench-scale upflow anoxic hybrid growth reactor (UAHGR) and an upflow anoxic suspended growth reactor (UASGR) to characterize the stoichiometric relationship between sulfur and nitrate in the process as well as the performance of the reactors. The level of nitrate removal from the UAHGR and UASGR were maintained at over 90% at a nitrate loading rate ranging from 0.15∼0.40 kgNO3 /m3·d and no significant nitrite accumulation was observed in either reactor. Although the influent pH values were higher than the optimum range of autotrophic denitrification at 8.7∼10.1, the effluent pH was stable at 7.2∼7.9 due to the production of hydrogen ions during operation. The stoichiometric ratio of sulfate production to nitrate removal was 1.5∼2.1 mgSO4 2−/mgNO3 in both reactors. A comparison of the reactor performance revealed that the chemical parameters of the UAHGR operation corresponded to a plug flow like type reactor while the chemical parameters of the UASGR operation corresponded to a completely stirred tank reactor like type reactor. UAHGR did not require sludge recycling due to the packed media while UASGR required 300∼700% sludge recycling. Therefore, spent sulfidic caustic could be used in the sulfur utilizing autotrophic denitrification processes as substrate and alkalinity sources.  相似文献   

5.
The impact of phenolic compounds (around 3.2 g/L) resulted in a completely failed performance in a mesophilic UASB reactor treating coal gasification wastewater. The recovery strategies, including extension of HRT, dilution, oxygen-limited aeration, and addition of powdered activated carbon were evaluated in batch tests, in order to obtain the most appropriate way for the quick recovery of the failed reactor performance. Results indicated that addition of powdered activated carbon and oxygen-limited aeration were the best recovery strategies in the batch tests. In the UASB reactor, addition of powdered activated carbon of 1 g/L shortened the recovery time from 25 to 9 days and oxygen-limited aeration of 0-0.5 mgO2/L reduced the recovery time to 17 days. Reduction of bioavailable concentration of phenolic compounds and recovery of sludge activity were the decisive factors for the recovery strategies to tackle the impact of phenolic compounds in anaerobic treatment of coal gasification wastewater.  相似文献   

6.
Denitrification of a synthetic wastewater containing nitrates and methanol as carbon source was carried out in two systems – a fluidized‐bed biofilm reactor (FBBR) and a stirred tank reactor (STR) – using Pseudomonas denitrificans over a period of five months. Nitrogen loading was varied during operation of both reactors to assess differences in the response to transient conditions. Experimental data were analyzed to obtain a comparison of denitrification kinetics in biofilm and suspended growth reactors. The comparison showed that the volumetric degradation capacity in the FBBR (5.36 kg N · m–3 · d–1) was higher than in the STR, due to higher biomass concentration (10 kg BM · m–3 vs 1.2 kg BM m–3).  相似文献   

7.
Enhanced biomethanation of kitchen waste by different pre-treatments   总被引:3,自引:0,他引:3  
Five different pre-treatments were investigated to enhance the solubilisation and anaerobic biodegradability of kitchen waste (KW) in thermophilic batch and continuous tests. In the batch solubilisation tests, the highest and the lowest solubilisation efficiency were achieved with the thermo-acid and the pressure-depressure pre-treatments, respectively. However, in the batch biodegradability tests, the highest cumulative biogas production was obtained with the pressure-depressure method. In the continuous tests, the best performance in terms of an acceptable biogas production efficiency of 60% and stable in-reactor CODs and VFA concentrations corresponded to the pressure-depressure reactor, followed by freeze-thaw, acid, thermo-acid, thermo and control. The maximum OLR (5 g COD L−1 d−1) applied in the pressure-depressure and freeze-thaw reactors almost doubled the control reactor. From the overall analysis, the freeze-thaw pre-treatment was the most profitable process with a net potential profit of around 11.5 € ton−1 KW.  相似文献   

8.
Yan G  Xu X  Yao L  Lu L  Zhao T  Zhang W 《Bioresource technology》2011,102(7):4628-4632
As one of the plug-flow reactors, biological aerated filter (BAF) reactor was divided into four sampling sectors to understand the characteristics of elemental nitrogen transformation during the reaction process, and then the different characteristics of elemental nitrogen transformation caused by different NH3-N loadings, biological quantities and activities in each section were obtained. The results showed that the total transformation ratio in the nitrifying reactor was more than 90% in the absence of any organic carbon resource, at the same time, more than 65% NH3-N in the influent were nitrified at the filter height of 70 cm below under the conditions of the influent runoff 9-19 L/h, the gas-water ratio 4-5:1, the dissolved oxygen 3.0-5.8 mg/L and the NH3-N load 0.28-0.48 kg NH3-N/m3 d. On the base of the Eckenfelder mode, the kinetics equation of the NH3-N transformation along the reactor was Se = S0 exp(−0.0134D/L1.2612).  相似文献   

9.
The effects of the chemical composition of water on granular sludge formation and characteristics in a denitrifying upflow sludge-blanket (USB) reactor were studied. Denitrification of drinking water showed different biomass sludge characteristics when the reactor was fed with groundwater as opposed to surface water. USB reactors fed with groundwater produced granules with good settling characteristics, SVI (sludge volume index) values lower than 30 ml/g, and high reactor biomass concentrations (20–25 g/l), while surface-water-fed reactors exhibited lower biomass concentrations (10–15 g/l) due to poor settling characteristics (SVI values of 50–90 ml/g). Sludge granules from the reactor fed with surface water had a low mineral content of between 10% and 20% as compared to a mineral content of 25%–50% in the groundwater reactor. The larger mineral content in the groundwater-fed reactor was due to a greater precipitation potential, i.e. higher concentrations of calcium and alkalinity present in groundwater combined with the release of alkalinity and subsequent increase in pH caused by biological denitrification. Verification for this phenomenon was established by enriching surface water with calcium and alkalinity, which increased the reactor's precipitation potential from 15 mg/1 to 40 mg/1 (as CaCO3). The granules obtained from the reactor fed with enriched surface water had a high mineral content of between 40% and 50% and very low SVI values, contributing to improved granule-settling characteristics and reactor stability.  相似文献   

10.
The biogeochemical processes that drive nutrient transformations and recycling in organic marine sediment-water environments were studied for 17 months in a zero-effluent intensive recirculating culture system. The system consisted of a 10 m3 gilthead seabream (Sparus aurata) tank coupled to aerobic and anaerobic water treatment elements. Nutrients and alkalinity were measured in the system to quantify the main biogeochemical processes. Fractions of the carbon fed in feed were found in fish (18.3%) and in sludge (11%); the missing carbon was respired by fish (45%) and by aerobic (8.4%) and anaerobic (7.7%) microorganisms. Fractions of the nitrogen fed in feed were found in fish (15.4%) and in sludge (14.3%); the missing nitrogen was eliminated by nitrification-denitrification. Most of the phosphorus and ash fed in feed and not found in fish accumulated within the sludge in the system. The rates of nitrification, denitrification and sulphate reduction increased with time, reaching 0.3 g N m− 2 d− 1, 53 g N m− 2 d− 1 and 145 g S m− 2 d− 1, respectively. Nitrification developed more rapidly than denitrification, leading at first to nitrate accumulation (to 20 mmol NO3 l− 1 by day 200) and a decrease in alkalinity. Once denitrification surpassed nitrification, nitrate concentrations decreased, eventually being reduced to < 0.3 mmol NO3 l− 1 by day 510, and alkalinity stabilized. Toxic hydrogen sulphide, generated within the anaerobic sludge, was oxidized by oxygen and nitrate as it diffused through the anaerobic-aerobic sediment-water interface. When nitrate levels in the water above the sludge dropped below 2 mmol l− 1, sulphide was also oxidized in the fluidized bed reactor. Denitrification reduced nitrate in the water, respired (jointly with sulphate reduction) carbon in the sludge, oxidized the hydrogen sulphide, and contributed to stabilization of alkalinity and accumulation of polyphosphate in bacteria as a major sink of labile P.  相似文献   

11.
Denitrification beds are a simple approach for removing nitrate (NO3) from a range of point sources prior to discharge into receiving waters. These beds are large containers filled with woodchips that act as an energy source for microorganisms to convert NO3 to nitrogen (N) gases (N2O, N2) through denitrification. This study investigated the biological mechanism of NO3 removal, its controlling factors and its adverse effects in a large denitrification bed (176 m × 5 m × 1.5 m) receiving effluent with a high NO3 concentration (>100 g N m−3) from a hydroponic glasshouse (Karaka, Auckland, New Zealand). Samples of woodchips and water were collected from 12 sites along the bed every two months for one year, along with measurements of gas fluxes from the bed surface. Denitrifying enzyme activity (DEA), factors limiting denitrification (availability of carbon, dissolved organic carbon (DOC), dissolved oxygen (DO), temperature, pH, and concentrations of NO3, nitrite (NO2) and sulfide (S2−)), greenhouse gas (GHG) production - as nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) - and carbon (C) loss were determined. NO3-N concentration declined along the bed with total NO3-N removal rates of 10.1 kg N d−1 for the whole bed or 7.6 g N m−3 d−1. NO3-N removal rates increased with temperature (Q10 = 2.0). In laboratory incubations, denitrification was always limited by C availability rather than by NO3. DO levels were above 0.5 mg L−1 at the inlet but did not limit NO3-N removal. pH increased steadily from about 6 to 7 along the length of the bed. Dissolved inorganic carbon (C-CO2) increased in average about 27.8 mg L−1, whereas DOC decreased slightly by about 0.2 mg L−1 along the length of the bed. The bed surface emitted on average 78.58 μg m−2 min−1 N2O-N (reflecting 1% of the removed NO3-N), 0.238 μg m−2 min−1 CH4 and 12.6 mg m−2 min−1 CO2. Dissolved N2O-N increased along the length of the bed and the bed released on average 362 g dissolved N2O-N per day coupled with N2O emission at the surface about 4.3% of the removed NO3-N as N2O. Mechanisms to reduce the production of this GHG need to be investigated if denitrification beds are commonly used. Dissolved CH4 concentrations showed no trends along the length of the bed, ranging from 5.28 μg L−1 to 34.24 μg L−1. Sulfate (SO42−) concentrations declined along the length of the bed on three of six samplings; however, declines in SO42− did not appear to be due to SO42− reduction because S2− concentrations were generally undetectable. Ammonium (NH4+) (range: <0.0007 mg L−1 to 2.12 mg L−1) and NO2 concentrations (range: 0.0018 mg L−1 to 0.95 mg L−1) were always very low suggesting that anammox was an unlikely mechanism for NO3 removal in the bed. C longevity was calculated from surface emission rates of CO2 and release of dissolved carbon (DC) and suggested that there would be ample C available to support denitrification for up to 39 years.This study showed that denitrification beds can be an efficient tool for reducing high NO3 concentrations in effluents but did produce some GHGs. Over the course of a year NO3 removal rates were always limited by C and temperature and not by NO3 or DO concentration.  相似文献   

12.
An expanded granular sludge bed (EGSB) reactor was adopted to incubate bio-granules that could simultaneously convert 4.8 kg-S m?3 d?1 of sulfide in 97% efficiency; 2.6 kg-N m?3 d?1 of nitrate in 92% efficiency; and 2.7 kg-C m?3 d?1 acetate in 95% efficiency. Mass balance calculation of sulfur, nitrogen, and carbon over the EGSB reactor confirmed the performance results. This noted reactor performance is much higher than those reported in literature. Stoichiometric relation suggests that the nitrate was reduced to nitrite via autotrophic denitrification pathway, then the formed nitrite was converted via heterotrophic denitrification pathway to N2.  相似文献   

13.
A two-phase system composed by a leach bed and a methanogenic reactor was modified for the first time to improve volumetric substrate degradation and methane yields from a complex substrate (maize; Zeamays). The system, which was operated for consecutive feed cycles of different durations for 120 days, was highly flexible and its performance improved by altering operational conditions. Daily substrate degradation was higher the shorter the feed cycle, reaching 8.5 g TSdestroyed d−1 (7-day feed cycle) but the overall substrate degradation was higher by up to 55% when longer feed cycles (14 and 28 days) were applied. The same occurred with volumetric methane yields, reaching 0.839 m3 (m3)−1 d−1. The system performed better than others on specific methane yields, reaching 0.434 m3 kg−1 TSadded, in the 14-day and 28-day systems. The UASB and AF designs performed similarly as second stage reactors on methane yields, SCOD and VFA removal efficiencies.  相似文献   

14.
The effect of starch addition on the microbial composition and the biological conversion was investigated using two upflow anaerobic sludge bracket (UASB) reactors treating methanolic wastewater: one reactor was operated with starch addition, and another reactor was operated without starch addition. Approximately 300 days of operation were performed at 30 kg COD/m3/d, and then, the organic load of the reactors was gradually increased to 120 kg COD/m3/d. Successful operation was achieved at 30 kg COD/m3/d in both reactors; however, the methanol-fed reactor did not perform well at 120 kg COD/m3/d while the methanol-starch-fed reactor did. The granule analysis revealed the granule developed further only in the methanol-starch-fed reactor. The results of the microbial community analysis revealed more Methanosaeta cells were present in the methanol-starch-fed reactor, suggesting the degradation of starch produced acetate as an intermediate, which stimulated the growth of Methanosaeta cells responsible for the extension of granules.  相似文献   

15.
Counter electrodes (CEs) of dye-sensitized solar cells (DSCs) can be prepared with different materials and methods. This review covers recent research on CEs using platinum, graphite, activated carbon, carbon black, single-wall carbon nanotubes, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole, and polyaniline as catalysts for reduction of triiodide. Moreover, for the ultimate in low-cost counter electrodes, we have prepared a carbon-black-loaded stainless steel electrode for use as a novel CE. This counter electrode exhibits good photovoltaic performance; the efficiency reaches 9.15% (16.3 mA cm−2Jsc, 785 mV Voc, and 71.4% fill factor) with SUS-316 stainless steel, equivalent to the performance with an FTO-glass substrate.  相似文献   

16.
Denitrification of synthetic high nitrate wastewater containing 40,000?ppm NO3 (9,032?ppm NO3-N) was achieved using immobilized activated sludge in a column reactor. Active anoxic sludge adsorbed onto Terry cloth was used in the denitrification of high nitrate wastewater. The operational stability of the immobilized sludge system was studied both in a batch reactor and in a continuous reactor. The immobilized sludge showed complete degradation of different concentrations of NO3-N (1,129, 1,693, 3,387, 6,774, and 9,032?ppm) in a batch process. The reactors were successfully run for 90?days without any loss in activity. The immobilized cell process has yielded promising results in attaining high denitrifying efficiency.  相似文献   

17.
This study demonstrated that partial nitritation using nitrifying activated sludge entrapped in a polyethylene glycol (PEG) gel carrier, as a pretreatment to anammox process, could be successfully applied to digester liquor of biogas plant at a nitrogen loading rate of 3.0 kg-N/m3/d. The nitritation process produced an effluent with a NO2–N/NH4–N ratio between 1.0 and 1.4, which was found to be suitable for the subsequent anammox process. A high SS concentration (2000–3000 mg/l) in the digester liquor did not affect partial nitritation treatment performances. Effluent from this partial nitritation reactor was successfully treated in the anammox reactor using anammox sludge entrapped in the PEG gel carrier with T-N removal rates of greater than 4.0 kg-N/m3/d. Influent BOD and SS contents did not inhibit anammox activity of the anammox gel carrier. The combination of partial nitritation and anammox reactors using PEG entrapped nitrifying and anammox bacteria was shown to be effective for the removal of high concentration ammonium in the digester liquor of a biogas plant.  相似文献   

18.
The optimization of a two-phase thermophilic anaerobic process treating biowaste for hydrogen and methane production was carried out at pilot scale using two stirred reactors (CSTRs) and without any physical/chemical pre-treatment of inoculum. During the experiment the hydrogen production at low hydraulic retention time (3d) was tested, both with and without reject water recirculation and at two organic loading rate (16 and 21 kgTVS/m3d). The better yields were obtained with recirculation where the pH reached an optimal value (5.5) thanks to the buffering capacity of the recycle stream. The specific gas production of the first reactor was 51 l/kgVSfed and H2 content in biogas 37%. The mixture of gas obtained from the two reactors met the standards for the biohythane mix only when lower loading rate were applied to the first reactor, with a composition of 6.7% H2, 40.1% CO2 and 52.3% CH4 the overall SGP being 0.78 m3/kgVSfed.  相似文献   

19.
The effects of crude glycerol on the performance of single-stage anaerobic reactors treating different types of organic waste were examined. A reactor treating the organic fraction of municipal solid waste produced 1400 mL CH4/d before the addition of glycerol and 2094 mL CH4/d after the addition of glycerol. An enhanced methane production rate was also observed when a 1:4 mixture of olive mill wastewater and slaughterhouse wastewater was supplemented with crude glycerol. Specifically, by adding 1% v/v crude glycerol to the feed, the methane production rate increased from 479 mL/d to 1210 mL/d. The extra glycerol-COD added to the feed did not have a negative effect on the reactor performance in either case. Supplementation of the feed with crude glycerol also had a significant positive effect on anaerobic fermentation reactors. Hydrogen yield was 26 mmole H2/g VS added and 15 mmole H2/g VS added in a reactor treating the organic fraction of municipal solid waste and a 1:4 mixture of olive mill and slaughterhouse wastewater. The addition of crude glycerol to the feed enhanced hydrogen yield at 2.9 mmole H2/g glycerol added and 0.7 mmole H2/g glycerol added.  相似文献   

20.
To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1 year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835 ± 21 to 62 ± 1 mW/m3. Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号