首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The alteration of the organic matter (OM) and the composition of bacterial community in microbial fuel cells (MFCs) supplied with soil (S) and a composted organic fertilizer (A) was examined at the beginning and at the end of 3 weeks of incubation under current-producing as well as no-current-producing conditions. Denaturing gradient gel electrophoresis revealed a significant alteration of the microbial community structure in MFCs generating electricity as compared with no-current-producing MFCs. The genetic diversity of cultivable bacterial communities was assessed by random amplified polymorphic DNA (RAPD) analysis of 106 bacterial isolates obtained by using both generic and elective media. Sequencing of the 16S rRNA genes of the more representative RAPD groups indicated that over 50.4% of the isolates from MFCs fed with S were Proteobacteria, 25.1% Firmicutes, and 24.5% Actinobacteria, whereas in MFCs supplied with A 100% of the dominant species belonged to γ-Proteobacteria. The chemical analysis performed by fractioning the OM and using thermal analysis showed that the amount of total organic carbon contained in the soluble phase of the electrochemically active chambers significantly decreased as compared to the no-current-producing systems, whereas the OM of the solid phase became more humified and aromatic along with electricity generation, suggesting a significant stimulation of a humification process of the OM. These findings demonstrated that electroactive bacteria are commonly present in aerobic organic substrates such as soil or a fertilizer and that MFCs could represent a powerful tool for exploring the mineralization and humification processes of the soil OM.  相似文献   

2.
Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current.  相似文献   

3.
Phylogenetic analysis of the nucleotide sequences of 16S rRNA genes in the metagenomic community of Lubomirskia baicalensis has revealed taxonomic diversity of bacteria associated with the endemic freshwater sponge. Fifty-four operational taxonomic units (OTUs) belonging to six bacterial phyla (Actinobacteria, Proteobacteria (class ??-Proteobacteria and ??-Proteobacteria) Verrucomicrobia, Bacteroidetes, Cyanobacteria, and Nitrospira) have been identified. Actinobacteria, whose representatives are known as antibiotic producers, is the dominant phylum of the community (37%, 20 OTUs). All sequences detected shared the maximal homology with unculturable microorganisms from freshwater habitats. The wide diversity of bacteria closely coexisting with the Baikal sponge indicate the complex ecological relationships in the community formed under the unique conditions of Lake Baikal.  相似文献   

4.
Microorganisms of plant phyllosphere play an important role in plant health and productivity and are influenced by abiotic and biotic factors. In this study, we investigated the phyllosphere bacterial communities of three cigar tobacco varieties cultivated in Guangcun (GC) and Wuzhishan (WZS), Hainan, China. Metagenomic DNA was extracted from tobacco leaf samples and sequenced by 16S rDNA amplicon sequencing. Our results showed that bacterial communities of cigar tobacco phyllosphere in GC exhibited remarkably higher alpha diversity than that in WZS. There was slight effect of tobacco genotype variations on the alpha diversity in both cultivation sites, and beta diversity and structure of bacterial community were not influenced significantly by the cultivation sites and tobacco varieties. Statistical analyses of species diversity unraveled that the dominant species in bacterial communities of cigar tobacco phyllosphere among all these samples were phylogenetically affiliated to Proteobacteria and Cyanobacteria. At the genus level, the most abundant microorganism was Limnobacter, followed by Brevundimonas, unidentified_Cyanobacteria, and Pseudomonas. Additionally, environmental conditions except for humidity were negatively correlated with the relative abundance of bacterial genera. Further analyses revealed that influence of site‐specific factors on tobacco bacterial community was relatively higher than genotype‐specific factors. In short, this study may contribute to the knowledge base of practical applications of bacterial inoculants for tobacco leaf production.  相似文献   

5.
Mining of metallic sulfide ore produces acidic water with high metal concentrations that have harmful consequences for aquatic life. To understand the composition and structure of microbial communities in acid mine drainage (AMD) waters associated with Zn mine tailings, molecular diversity of 16S genes was examined using a PCR, cloning, and sequencing approach. A total of 78 operational taxonomic units (OTUs) were obtained from samples collected at five different sites in and around mining residues in Sepetiba Bay, Brazil. We analyzed metal concentration, physical, chemical, and microbiological parameters related to prokaryotic diversity in low metal impacted compared to highly polluted environments with Zn at level of gram per liter and Cd–Pb at level of microgram per liter. Application of molecular methods for community structure analyses showed that Archaea and Bacteria groups present a phylogenetic relationship with uncultured environmental organisms. Phylogenetic analysis revealed that bacteria present at the five sites fell into seven known divisions, α-Proteobacteria (13.4%), β-Proteobacteria (16.3%), γ-Proteobacteria (4.3%), Sphingobacteriales (4.3%), Actinobacteria (3.2%) Acidobacteria (2.1%), Cyanobacteria (11.9%), and unclassified bacteria (44.5%). Almost all archaeal clones were related to uncultivated Crenarchaeota species, which were shared between high impacted and low impacted waters. Rarefaction curves showed that bacterial groups are more diverse than archaeal groups while the overall prokaryotic biodiversity is lower in high metal impacted environments than in less polluted habitats. Knowledge of this microbial community structure will help in understanding prokaryotic diversity, biogeography, and the role of microorganisms in zinc smelting AMD generation and perhaps it may be exploited for environmental remediation procedures in this area.  相似文献   

6.
Although all plant and animal species harbor microbial symbionts, we know surprisingly little about the specificity of microbial communities to their hosts. Few studies have compared the microbiomes of different species of animals, and fewer still have examined animals in the wild. We sampled four pond habitats in Colorado, USA, where multiple amphibian species were present. In total, 32 amphibian individuals were sampled from three different species including northern leopard frogs (Lithobates pipiens), western chorus frogs (Pseudacris triseriata) and tiger salamanders (Ambystoma tigrinum). We compared the diversity and composition of the bacterial communities on the skin of the collected individuals via barcoded pyrosequencing of the 16S rRNA gene. Dominant bacterial phyla included Acidobacteria, Actinobacteria, Bacteriodetes, Cyanobacteria, Firmicutes and Proteobacteria. In total, we found members of 18 bacterial phyla, comparable to the taxonomic diversity typically found on human skin. Levels of bacterial diversity varied strongly across species: L. pipiens had the highest diversity; A. tigrinum the lowest. Host species was a highly significant predictor of bacterial community similarity, and co-habitation within the same pond was not significant, highlighting that the skin-associated bacterial communities do not simply reflect those bacterial communities found in their surrounding environments. Innate species differences thus appear to regulate the structure of skin bacterial communities on amphibians. In light of recent discoveries that some bacteria on amphibian skin have antifungal activity, our finding suggests that host-specific bacteria may have a role in the species-specific resistance to fungal pathogens.  相似文献   

7.
Bacterial communities of marine sponges are believed to be an important partner for host survival but remain poorly studied. Sponges show difference in richness and abundance of microbial population inhabiting them. Three marine sponges belonging to the species of Pione vastifica, Siphonochalina siphonella and Suberea mollis were collected from Red sea in Jeddah and were investigated using high throughput sequencing. Highly diverse communities containing 105 OTUs were identified in S. mollis host. Only 61 and 43 OTUs were found in P. vastifica and S. siphonella respectively. We identified 10 different bacterial phyla and 31 genera using 27,356 sequences. Most of the OTUs belong to phylum Proteobacteria (29%–99%) comprising of Gammaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria where later two were only detected in HMA sponge, S. mollis. A number of 16S rRNA sequences (25%) were not identified to phylum level and may be novel taxa. Richness of bacterial community and Shannon, Simpson diversity revealed that sponge S. mollis harbors high diversity compared to other two LMA sponges. Dominance of Proteobacteria in sponges may indicate an ecological significance of this phylum in the Red sea sponges. These differences in bacterial composition may be due to difference in location site or host responses to environmental conditions. To the best of our knowledge, the microbial communities of these sponges have never been studied before and this is first attempt to unravel bacterial diversity using PCR-based 454-pyrosequencing method.  相似文献   

8.
This study determined the influence of substrate degradation on power generation in microbial fuel cells (MFCs) and microbial community selection on the anode. Air cathode MFCs were fed synthetic medium containing different substrates (acetate, glucose and starch) using primary clarifier sewage as source of electroactive bacteria. The complexity of the substrate affected the MFC performance both for power generation and COD removal. Power output decreased with an increase in substrate complexity from 99 ± 2 mW m−2 for acetate to 4 ± 2 mW m−2 for starch. The organic matter removal and coulombic efficiency (CE) of MFCs with acetate and glucose (82% of COD removal and 26% CE) were greater than MFCs using starch (60% of COD removal and 19% of CE). The combined hydrolysis–fermentation rate obtained (0.0024 h−1) was considerably lower than the fermentation rate (0.018 h−1), indicating that hydrolysis of complex compounds limits current output over fermentation. Statistical analysis of microbial community fingerprints, developed on the anode, showed that microbial communities were enriched according to the type of substrate used. Microbial communities producing high power outputs (fed acetate) clustered separately from bacterial communities producing low power outputs (fed complex compounds).  相似文献   

9.
The aim of this study was to improve our understanding of seasonal variations and the effects of physicochemical conditions on the bacterioplankton communities in two small rivers, the Moo and Nakayachi Rivers in the Himi region of central Japan. These rivers are inhabited by unionid freshwater mussels, which are used for oviposition by the endangered Itasenpara bitterling (Acheilognathus longipinnis). Water samples were collected every month between March 2011 and February 2012. Changes in bacterioplankton community structures were analysed using an approach that did not require cultivating the bacteria and involved PCR and denaturing gradient gel electrophoresis. The bacterioplankton community structures in the two rivers were similar in all seasons except winter. The bacterial sequences identified were dominated by typical freshwater Actinobacteria, Bacteroidetes, Cyanobacteria, α-Proteobacteria, and β-Proteobacteria bacterioplankton. Many β-Proteobacteria species were detected in all seasons, but Bacteroidetes species were dominant in the winter. The bacterioplankton community structures were affected by biochemical oxygen demand, chemical oxygen demand, chlorophyll-a concentration, water depth, and water temperature. These results provide a foundation for a more detailed understanding of the conditions that provide a suitable unionid habitat.  相似文献   

10.
Feasibility of using chocolate industry wastewater as a substrate for electricity generation using activated sludge as a source of microorganisms was investigated in two-chambered microbial fuel cell. The maximum current generated with membrane and salt bridge MFCs was 3.02 and 2.3 A/m2, respectively, at 100 Ω external resistance, whereas the maximum current generated in glucose powered MFC was 3.1 A/m2. The use of chocolate industry wastewater in cathode chamber was promising with 4.1 mA current output. Significant reduction in COD, BOD, total solids and total dissolved solids of wastewater by 75%, 65%, 68%, 50%, respectively, indicated effective wastewater treatment in batch experiments. The 16S rDNA analysis of anode biofilm and suspended cells revealed predominance of β-Proteobacteria clones with 50.6% followed by unclassified bacteria (9.9%), α-Proteobacteria (9.1%), other Proteobacteria (9%), Planctomycetes (5.8%), Firmicutes (4.9%), Nitrospora (3.3%), Spirochaetes (3.3%), Bacteroides (2.4%) and γ-Proteobacteria (0.8%). Diverse bacterial groups represented as members of the anode chamber community.  相似文献   

11.
A diverse array of bacteria that inhabit the rhizosphere and different plant organs play a crucial role in plant health and growth. Therefore, a general understanding of these bacterial communities and their diversity is necessary. Using the 16S rRNA gene clone library technique, the bacterial community structure and diversity of the rhizosphere and endophytic bacteria in Stellera chamaejasme compartments were compared and clarified for the first time. Grouping of the sequences obtained showed that members of the Proteobacteria (43.2%), Firmicutes (36.5%) and Actinobacteria (14.1%) were dominant in both samples. Other groups that were consistently found, albeit at lower abundance, were Bacteroidetes (2.1%), Chloroflexi (1.9%), and Cyanobacteria (1.7%). The habitats (rhizosphere vs endophytes) and organs (leaf, stem and root) structured the community, since the Wilcoxon signed rank test indicated that more varied bacteria inhabited the rhizosphere compared to the organs of the plant. In addition, correspondence analysis also showed that differences were apparent in the bacterial communities associated with these distinct habitats. Moreover, principal component analysis revealed that the profiles obtained from the rhizosphere and roots were similar, whereas leaf and stem samples clustered together on the opposite side of the plot from the rhizosphere and roots. Taken together, these results suggested that, although the communities associated with the rhizosphere and organs shared some bacterial species, the associated communities differed in structure and diversity.  相似文献   

12.
The effects of three different inocula (domestic wastewater, activated sludge, and anaerobic sludge) on the treatment of acidic food waste leachate in microbial fuel cells (MFCs) were evaluated. A food waste leachate (pH 4.76; 1000 mg chemical oxygen demand (COD)/L) was used as the substrate. The results indicate that the leachate itself can enable electricity production in an MFC, but the co-addition of different inocula significantly reduces the start-up time (approximately 7 days). High COD and volatile fatty acids removal (>87%) were obtained in all MFCs but with only low coulombic efficiencies (CEs) (14–20%). The highest power (432 mW/m3) and CE (20%) were obtained with anaerobic sludge as the co-inoculum. Microbial community analysis (PCR-DGGE) of the established biofilms suggested that the superior performance of the anaerobic sludge-MFC was associated with the enrichment of both fermentative (Clostridium sp. and Bacteroides sp.) and electrogenic bacteria (Magnetospirillum sp. and Geobacter sp.) at the anode.  相似文献   

13.
Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be active participants contributing to the bloom dynamics. Our statistical results suggested that salinity, temperature and nitrate may be some of the key environmental factors controlling the composition and dynamics of the marine NAB communities.  相似文献   

14.
Microbial communities are linked with marine sponge are diverse in their structure and function. Our understanding of the sponge-associated microbial diversity is limited especially from Red Sea in Saudi Arabia where few species of sponges have been studied. Here we used pyrosequencing to study two marine sponges and coral species sampled from Obhur region from Red sea in Jeddah. A total of 168 operational taxonomic units (OTUs) were identified from Haliclona caerulea, Stylissa carteri and Rhytisma fulvum. Taxonomic identification of tag sequences of 16S ribosomal RNA revealed 6 different bacterial phyla and 9 different classes. A proportion of unclassified reads were was also observed in sponges and coral sample. We found diverse bacterial communities associated with two sponges and a coral sample. Diversity and richness estimates based on OUTs revealed that sponge H. caerulea had significantly high bacterial diversity. The identified OTUs showed unique clustering in three sponge samples as revealed by Principal coordinate analysis (PCoA). Proteobacteria (88–95%) was dominant phyla alonwith Bacteroidetes, Planctomycetes, Cyanobacteria, Firmicutes and Nitrospirae. Seventeen different genera were identified where genus Pseudoalteromonas was dominant in all three samples. This is first study to assess bacterial communities of sponge and coral sample that have never been studied before to unravel their microbial communities using 454-pyrosequencing method.  相似文献   

15.
Culture-dependent and -independent approaches were employed to identify the bacterial community structure from olive-mill wastewater produced from three olive-fruit varieties. The 233 bacterial isolates recovered were phylogenetically related to 38 members of Firmicutes, Actinobacteria, α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, and Bacteroidetes. Employing a novel microarray-based approach (PhyloChip) a high bacterial diversity was revealed consisting of 18 different phyla with representatives from 99 different families. The bacterial diversity in olive-mill wastewater from the three olive tree varieties was dominated by α-, β-, γ-, δ-, ε-Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Cyanobacteria, and Actinobacteria. This in-depth analysis of the indigenous microbiota indicated a cultivar-specific bacterial profile. Interestingly, the common bacterial taxa present in all three varieties examined were restricted indicating that the bacterial communities present in the olive-mill wastewater are greatly influenced by the olive-fruit variety.  相似文献   

16.
Bacterial communities of the water and the biofilm formed during five years on an artificial substrate in Lake Baikal were studied by the pyrosequencing of 16S rRNA gene fragments; taxonomic diversity of bacterial communities and differences in their structure were revealed. The biofilm community contained mainly representatives of three phyla: Cyanobacteria, Bacteroidetes, and Proteobacteria; the amounts of other groups were within 1%. Bacterial community of the plankton was more heterogeneous; along with the dominant phyla (Bacteroidetes, Actinobacteria, and Proteobacteria) 15% of the members were of the other phyla. The use of pyrosequencing allowed to reveal 35 bacterial phyla in Lake Baikal, some of which were identified for the first time; moreover, minor groups of microorganisms (including only several sequences), which were not earlier determined by other molecular methods were found.  相似文献   

17.
Bacterial community dynamics and biodegradation processes were examined in a highly creosote-contaminated soil undergoing a range of laboratory-based bioremediation treatments. The dynamics of the eubacterial community, the number of heterotrophs and polycyclic aromatic hydrocarbon (PAH) degraders, and the total petroleum hydrocarbon (TPH) and PAH concentrations were monitored during the bioremediation process. TPH and PAHs were significantly degraded in all treatments (72 to 79% and 83 to 87%, respectively), and the biodegradation values were higher when nutrients were not added, especially for benzo(a)anthracene and chrysene. The moisture content and aeration were determined to be the key factors associated with PAH bioremediation. Neither biosurfactant addition, bioaugmentation, nor ferric octate addition led to differences in PAH or TPH biodegradation compared to biodegradation with nutrient treatment. All treatments resulted in a high first-order degradation rate during the first 45 days, which was markedly reduced after 90 days. A sharp increase in the size of the heterotrophic and PAH-degrading microbial populations was observed, which coincided with the highest rates of TPH and PAH biodegradation. At the end of the incubation period, PAH degraders were more prevalent in samples to which nutrients had not been added. Denaturing gradient gel electrophoresis analysis and principal-component analysis confirmed that there was a remarkable shift in the composition of the bacterial community due to both the biodegradation process and the addition of nutrients. At early stages of biodegradation, the α-Proteobacteria group (genera Sphingomonas and Azospirillum) was the dominant group in all treatments. At later stages, the γ-Proteobacteria group (genus Xanthomonas), the α-Proteobacteria group (genus Sphingomonas), and the Cytophaga-Flexibacter-Bacteroides group (Bacteroidetes) were the dominant groups in the nonnutrient treatment, while the γ-Proteobacteria group (genus Xathomonas), the β-Proteobacteria group (genera Alcaligenes and Achromobacter), and the α-Proteobacteria group (genus Sphingomonas) were the dominant groups in the nutrient treatment. This study shows that specific bacterial phylotypes are associated both with different phases of PAH degradation and with nutrient addition in a preadapted PAH-contaminated soil. Our findings also suggest that there are complex interactions between bacterial species and medium conditions that influence the biodegradation capacity of the microbial communities involved in bioremediation processes.  相似文献   

18.
Li Z  He L  Miao X 《Current microbiology》2007,55(6):465-472
The cultivable bacterial communities associated with four South China Sea sponges—Stelletta tenuis, Halichondria rugosa, Dysidea avara, and Craniella australiensis in mixed cultures—were investigated by microbial community DNA-based DGGE fingerprinting and 16S rDNA phylogenetic analysis. Diverse bacteria such as α-, γ-, δ-Proteobacteria, Bacteroidetes, and Firmicutes were cultured, some of which were previously uncultivable bacteria, potential novel strains with less than 95% similarity to their closest relatives and sponge symbionts growing only in the medium with the addition of sponge extract. According to 16S rDNA BLAST analysis, most of the bacteria were cultured from sponge for the first time, although similar phyla of bacteria have been previously recognized. The selective pressure of sponge extract on the cultured bacterial species was suggested, although the effect of sponge extract on bacterial community in high nutrient medium is not significant. Although α- and γ-Proteobacteria appeared to form the majority of the dominant cultivable bacterial communities of the four sponges, the composition of the cultivable bacterial community in the mixed culture was different, depending on the medium and sponge species. Greater bacterial diversity was observed in media C and CS for Stelletta tenuis, in media F and FS for Halichondria rugosa and Craniella australiensis. S. tenuis was found to have the highest cultivable bacterial diversity including α-, γ-, δ-Proteobacteria, Bacteroidetes, and Firmicutes, followed by sponge Dysidea avara without δ-Proteobacteria, sponge Halichondria rugosa with only α-, γ-Proteobacteria and Bacteroidetes, and sponge C. australiensis with only α-, γ-Proteobacteria and Firmicutes. Based on this study, by the strategy of mixed cultivation integrated with microbial community DNA-based DGGE fingerprinting and phylogenetic analysis, the cultivable bacterial community of sponge could be revealed effectively.  相似文献   

19.

This study evaluated the effect of inorganic mercury (Hg) on bacterial community and diversity in different soils. Three soils—neutral, alkaline and acidic—were spiked with six different concentrations of Hg ranging from 0 to 200 mg kg−1 and aged for 90 days. At the end of the ageing period, 18 samples from three different soils were investigated for bacterial community structure and soil physicochemical properties. Illumina MiSeq-based 16s ribosomal RNA (rRNA) amplicon sequencing revealed the alteration in the bacterial community between un-spiked control soils and Hg-spiked soils. Among the bacterial groups, Actinobacteria (22.65%) were the most abundant phyla in all samples followed by Proteobacteria (21.95%), Bacteroidetes (4.15%), Firmicutes (2.9%) and Acidobacteria (2.04%). However, the largest group showing increased abundance with higher Hg doses was the unclassified group (45.86%), followed by Proteobacteria. Mercury had a considerable negative impact on key soil functional bacteria such as ammonium oxidizers and nitrifiers. Canonical correspondence analysis (CCA) indicated that among the measured soil properties, Hg had a major influence on bacterial community structure. Furthermore, nonlinear regression analysis confirmed that Hg significantly decreased soil bacterial alpha diversity in lower organic carbon containing neutral and alkaline soils, whereas in acidic soil with higher organic carbon there was no significant correlation. EC20 values obtained by a nonlinear regression analysis indicated that Hg significantly decreased soil bacterial diversity in concentrations lower than several guideline values.

  相似文献   

20.
Echinacea pallida (EPAL), a herbaceous flowering plant with immunomodulatory properties, has been chosen to determine the pre- and post-supplementary effects on the growth performances, bacterial community, blood parameters and immunity of growing rabbits. The same Grimaud does (14-week-old) from the studied in the first part of this study were randomly divided into two groups (n=50/group). The first group was fed a basal diet without supplementation (Control group, C) while the another group was fed a basal diet supplemented with 3 g EPAL/kg diet (Echinacea group, E). From the second parturition, 80 weaned kits (40 from the C does and 40 from the E does) were randomly assigned to four groups of 20 animals each and were fed a growing commercial diet supplemented with or without a 3 g EPAL/kg diet: the CC group (rabbits from the C does fed the control diet), CE group (rabbits from the C does fed the supplemented diet), EC (rabbits from the E does fed the control diet) and EE group (rabbits from the E does fed the supplemented diet). The dietary EPAL treatment did not affect the growth performance. Ten fattening rabbits from each group were selected to evaluate the bacterial community and blood parameters, while the remaining rabbits (n=10/group) were used to study phagocytosis and the humoral immune response. The variability was evaluated from hard faeces at 35, 49 and 89 days, and the caecal content at 89 days. The variability of the bacterial community of the EE group was higher than that of the other groups. The phagocytic activity was higher in the CE and EE groups than in the CC and EC ones (30.9 and 29.7 v. 21.2 and 21.8%; P<0.05), whereas no statistically significant difference was observed for the blood parameters or humoral immune response against vaccination (rabbit haemorrhagic disease virus) at 95 days old which the serum was collected at 88, 102, 109, 116 and 123 days old. In conclusion, no impact of EPAL dietary supplementation has been observed on the growth performances, bacterial community, blood parameters or humoral immune responses in growing rabbits, except for an increase in phagocytic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号