首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhong W  Zhang Z  Luo Y  Sun S  Qiao W  Xiao M 《Bioresource technology》2011,102(24):11177-11182
A biological pretreatment with new complex microbial agents was used to pretreat corn straw at ambient temperature (about 20°C) to improve its biodegradability and anaerobic biogas production. A complex microbial agent dose of 0.01% (w/w) and pretreatment time of 15 days were appropriate for biological pretreatment. These treatment conditions resulted in 33.07% more total biogas yield, 75.57% more methane yield, and 34.6% shorter technical digestion time compared with the untreated sample. Analyses of chemical compositions showed 5.81-25.10% reductions in total lignin, cellulose, and hemicellulose contents, and 27.19-80.71% increases in hot-water extractives; these changes contributed to the enhancement of biogas production. Biological pretreatment could be an effective method for improving biodegradability and enhancing the highly efficient biological conversion of corn straw into bioenergy.  相似文献   

2.
Low-liquid pretreatment of corn stover with aqueous ammonia   总被引:1,自引:0,他引:1  
Li X  Kim TH 《Bioresource technology》2011,102(7):4779-4786
A low-liquid pretreatment method of corn stover using aqueous ammonia was studied to reduce the severity and liquid throughput associated with the pretreatment step for ethanol production. Corn stover was treated at 0.5-50.0 wt.% of ammonia loading, 1:0.2-5.0 (w/w) of solid-to-liquid ratio, 30 °C for 4-12 weeks. The effects of these conditions on the composition and enzyme digestibility of pretreated corn stover were investigated. Pretreatment of corn stover at 30 °C for four weeks using 50 wt.% of ammonia loading and 1:5 solid-to-liquid ratio resulted in 55% delignification and 86.5% glucan digestibility with 15 FPU cellulase + 30 CBU β-glucosidase/g-glucan.Simultaneous saccharification and fermentation of corn stover treated at 30 °C for four weeks using 50 wt.% ammonia loading and 1:2 solid-to-liquid ratio gave an ethanol yield of 73% of the theoretical maximum based on total carbohydrates (glucan + xylan) present in the untreated material.  相似文献   

3.
Ionic liquid (IL) and ammonia fiber expansion (AFEX) pretreatments were studied to develop the first direct side-by-side comparative assessment on their respective impacts on biomass structure, composition, process mass balance, and enzymatic saccharification efficiency. AFEX pretreatment completely preserves plant carbohydrates, whereas IL pretreatment extracts 76% of hemicellulose. In contrast to AFEX, the native crystal structure of the recovered corn stover from IL pretreatment was significantly disrupted. For both techniques, more than 70% of the theoretical sugar yield was attained after 48 h of hydrolysis using commercial enzyme cocktails. IL pretreatment requires less enzyme loading and a shorter hydrolysis time to reach 90% yields. Hemicellulase addition led to significant improvements in the yields of glucose and xylose for AFEX pretreated corn stover, but not for IL pretreated stover. These results provide new insights into the mechanisms of IL and AFEX pretreatment, as well as the advantages and disadvantages of each.  相似文献   

4.
Yoo CG  Nghiem NP  Hicks KB  Kim TH 《Bioresource technology》2011,102(21):10028-10034
A simple pretreatment method using anhydrous ammonia was developed to minimize water and ammonia inputs for cellulosic ethanol production, termed the low moisture anhydrous ammonia (LMAA) pretreatment. In this method, corn stover with 30–70% moisture was contacted with anhydrous ammonia in a reactor under nearly ambient conditions. After the ammoniation step, biomass was subjected to a simple pretreatment step at moderate temperatures (40–120 °C) for 48–144 h. Pretreated biomass was saccharified and fermented without an additional washing step. With 3% glucan loading of LMAA-treated corn stover under best treatment conditions (0.1 g-ammonia + 1.0 g-water per g biomass, 80 °C, and 84 h), simultaneous saccharification and cofermentation test resulted in 24.9 g/l (89% of theoretical ethanol yield based on glucan + xylan in corn stover).  相似文献   

5.
Supercritical CO2 (SC-CO2), a green solvent suitable for a mobile lignocellulosic biomass processor, was used to pretreat corn stover and switchgrass at various temperatures and pressures. The CO2 pressure was released as quickly as possible by opening a quick release valve during the pretreatment. The biomass was hydrolyzed after pretreatment using cellulase combined with β-glucosidase. The hydrolysate was analyzed for the amount of glucose released. Glucose yields from corn stover samples pretreated with SC-CO2 were higher than the untreated sample’s 12% glucose yield (12 g/100 g dry biomass) and the highest glucose yield of 30% was achieved with SC-CO2 pretreatment at 3500 psi and 150 °C for 60 min. The pretreatment method showed very limited improvement (14% vs. 12%) in glucose yield for switchgrass. X-ray diffraction results indicated no change in crystallinity of the SC-CO2 treated corn stover when compared to the untreated, while SEM images showed an increase in surface area.  相似文献   

6.
Pretreatment of corn stover in 0.5% sulfuric acid at 160 °C for 40 min realized a maximum monomeric plus oligomeric xylose yield of 93.1% compared to a maximum of only 71.5% for hydrothermal (no added mineral acid) pretreatment at 180 °C for 30 min. To explain differences in dilute acid and hydrothermal yields, a fast reacting xylan fraction (0.0889) was assumed to be able to directly form monomeric xylose while a slow reacting portion (0.9111) must first form oligomers during hydrothermal pretreatment. Two reactions to oligomers were proposed: reversible from fast reacting xylan and irreversible from slow reacting xylan. A kinetic model and its analytical solution simulated xylan removal data well for dilute acid and hydrothermal pretreatment of corn stover. These results suggested that autocatalytic reactions from xylan to furfural in hydrothermal pretreatment were controlled by oligomeric xylose decomposition, while acid-catalytic reactions in dilute acid pretreatment were controlled by monomeric xylose decomposition.  相似文献   

7.
The effect of combination of mechanical and chemical pretreatment of municipal waste activated sludge (WAS) prior to anaerobic digestion was studied using a laboratory scale system with an objective to decrease volatile sulfur compounds in biogas and digested sludge. Mechanical pretreatment was conducted using depressurization of WAS through a valve from a batch pretreatment reactor pressurized at 75 ± 1 psi, while combined pretreatments were conducted using six different dosages of hydrogen peroxide (H2O2) and ferrous chloride (FeCl2) along with mechanical pretreatment. About 37-46% removal of H2S in biogas occurred for different combined pretreatment conditions. Sludge solubilization achieved due to the mechanical pretreatment increased total cumulative methane production by 8-10% after 30 days during the biochemical methane potential (BMP) test. The pretreatment also improved dewaterability in terms of time to filter (TTF), and decreased methyl mercaptan generation potential of the digested sludge.  相似文献   

8.
The effect of corn stover pretreatment on glucose quantitation in hydrolysate using Raman spectroscopy is evaluated. Dilute sulfuric-acid pretreatment results in a 20 mg mL−1 glucose limit of detection in hydrolysate. Soaking in aqueous ammonia pretreatment produces a 4 mg mL−1 limit of detection. Water, ethanol or hexane extraction of corn stover reduces the spectral background that limits glucose detection in dilute acid hydrolysate. Additionally, a Raman spectroscopy multi-peak fitting method is presented to simultaneously measure glucose and xylose concentration in hydrolysate. This method yields a 6.1% average relative standard error at total saccharide concentrations above 45 mg mL−1. When only cellulase is present, glucose and xylose yield were measured by Raman spectroscopy to be 32 ± 4 and 7.0 ± 0.8 mg mL−1, respectively. When both cellulase and hemicellulase were present, xylose yield increased to 18.0 ± 0.5 mg mL−1. Enzymatic or colorimetric assays confirmed the validity of the Raman spectroscopy results.  相似文献   

9.
A central composite design of response surface method was used to optimize H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw, in respect to acid concentration (0.5–2%), treatment time (5–20 min) and solid content (10–20%) at 180 °C. Enzymatic hydrolysis and fermentation were also measured to evaluate the optimal pretreatment conditions for maximizing ethanol production. The results showed that acid concentration and treatment time were more significant than solid content for optimization of xylose release and cellulose recovery. Pretreatment with 1% sulfuric acid and 20% solid content for 10 min at 180 °C was found to be the most optimal condition for pretreatment of rapeseed straw for ethanol production. After pretreatment at the optimal condition and enzymatic hydrolysis, 75.12% total xylan and 63.17% total glucan were converted to xylose and glucose, respectively. Finally, 66.79% of theoretical ethanol yielded after fermentation.  相似文献   

10.
Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require a low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated manually and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0%, 0.4%, or 0.8% NaOH for 2 h at room temperature, washed, autoclaved and saccharified. In addition, dilute sulfuric acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.  相似文献   

11.
Xu J  Cheng JJ 《Bioresource technology》2011,102(4):3861-3868
Sodium hydroxide (NaOH) and lime (Ca(OH)2) were innovatively used together in this study to improve the cost-effectiveness of alkaline pretreatment of switchgrass at ambient temperature. Based on the sugar production in enzymatic hydrolysis, the best pretreatment conditions were determined as: residence time of 6 h, NaOH loading of 0.10 g/g raw biomass, NaOH addition at the beginning, Ca(OH)2 loading of 0.02 g/g raw biomass, and biomass wash intensity of 100 ml water/g raw biomass, at which the glucose and xylose yields were respectively 59.4% and 57.3% of the theoretical yields. The sugar yield of the biomass pretreated using the combination of 0.10 g NaOH/g raw biomass and 0.02 g Ca(OH)2/g raw biomass was found comparable with that of the biomass pretreated using 0.20 g NaOH/g raw biomass at the same conditions, while the chemical expense was remarkably reduced due to the low cost of lime and the reduced loading of NaOH.  相似文献   

12.
Corn stover was pretreated with FeCl3 to remove almost all of the hemicellulose present and then hydrolyzed with cellulase and β-glucosidase to produce glucose. Enzymatic hydrolysis of corn stover that had been pretreated with FeCl3 at 160 °C for 20 min resulted in an optimum yield of 98.0%. This yield was significantly higher than that of untreated corn stover (22.8%). FeCl3 pretreatment apparently damaged the surface of corn stover and significantly increased the enzymatic digestibility, as evidenced by SEM and XRD analysis data. FTIR analysis indicated that FeCl3 pretreatment could disrupt almost all the ether linkages and some ester linkages between lignin and carbohydrates but had no effect on delignification. The FeCl3 pretreatment technique, as a novel pretreatment method, enhances enzymatic hydrolysis of lignocellulosic biomass by destructing chemical composition and altering structural features.  相似文献   

13.
An investigation into the influence of low temperature thermo-chemical pretreatment on sludge reduction in a semi-continuous anaerobic reactor was performed. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (60 °C with pH 12), COD solubilization, suspended solids, reduction and biogas production was 23%, 22% and 51% higher than the control, respectively. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5 L), with 4 L working volume. With three operated SRTs, the SRT of 15 days was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 80.5%, 117% and 90.4% of TS, SS and VS reduction respectively, with an improvement of 103% in biogas production. Thus, low temperature thermo-chemical can play an important role in reducing sludge production.  相似文献   

14.
The potential of biogas production from the residues of second generation bioethanol production was investigated taking into consideration two types of pretreatment: lime or alkaline hydrogen peroxide. Bagasse was pretreated, enzymatically hydrolyzed and the wastes from pretreatment and hydrolysis were used to produce biogas. Results have shown that if pretreatment is carried out at a bagasse concentration of 4% DM, the highest global methane production is obtained with the peroxide pretreatment: 72.1 L methane/kg bagasse. The recovery of lignin from the peroxide pretreatment liquor was also the highest, 112.7 ± 0.01 g/kg of bagasse. Evaluation of four different biofuel production scenarios has shown that 63-65% of the energy that would be produced by bagasse incineration can be recovered by combining ethanol production with the combustion of lignin and hydrolysis residues, along with the anaerobic digestion of pretreatment liquors, while only 32-33% of the energy is recovered by bioethanol production alone.  相似文献   

15.
Biological pretreatment of lignocellulosic biomass by white‐rot fungus can represent a low‐cost and eco‐friendly alternative to harsh physical, chemical, or physico‐chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid‐state cultivation of corn stover with Phlebia brevispora NRRL‐13018 was optimized with respect to duration, moisture content and inoculum size. Changes in composition of pretreated corn stover and its susceptibility to enzymatic hydrolysis were analyzed. About 84% moisture and 42 days incubation at 28°C were found to be optimal for pretreatment with respect to enzymatic saccharification. Inoculum size had little effect compared to moisture level. Ergosterol data shows continued growth of the fungus studied up to 57 days. No furfural and hydroxymethyl furfural were produced. The total sugar yield was 442 ± 5 mg/g of pretreated corn stover. About 36 ± 0.6 g ethanol was produced from 150 g pretreated stover per L by fed‐batch simultaneous saccharification and fermentation (SSF) using mixed sugar utilizing ethanologenic recombinant Eschericia coli FBR5 strain. The ethanol yields were 32.0 ± 0.2 and 38.0 ± 0.2 g from 200 g pretreated corn stover per L by fed‐batch SSF using Saccharomyces cerevisiae D5A and xylose utilizing recombinant S. cerevisiae YRH400 strain, respectively. This research demonstrates that P. brevispora NRRL‐13018 has potential to be used for biological pretreatment of lignocellulosic biomass. This is the first report on the production of ethanol from P. brevispora pretreated corn stover. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:365–374, 2017  相似文献   

16.
Wan C  Li Y 《Bioresource technology》2011,102(16):7507-7512
Different types of feedstocks, including corn stover, wheat straw, soybean straw, switchgrass, and hardwood, were tested to evaluate the effectiveness of fungal pretreatment by Ceriporiopsis subvermispora. After 18-d pretreatment, corn stover, switchgrass, and hardwood were effectively delignified by the fungus through manganese peroxidase and laccase. Correspondingly, glucose yields during enzymatic hydrolysis reached 56.50%, 37.15%, and 24.21%, respectively, which were a 2 to 3-fold increase over those of the raw materials. A further 10-30% increase in glucose yields was observed when pretreatment time extended to 35 d. In contrast, cellulose digestibility of wheat straw and soybean straw was not significantly improved by fungal pretreatment. When external carbon sources and enzyme inducers were added during fungal pretreatment of wheat straw and soybean straw, only glucose and malt extract addition improved cellulose digestibility of wheat straw. The cellulose digestibility of soybean straw was not improved.  相似文献   

17.
Alkali treatment of corn stover improves the avaliability of cellulose and hemicellulose for enzymatic attack. Treatments were carried out for 1 to 60 min at temperatures and NaOH concentrations ranging from 100 to 150 degrees C and 0 to 2%, respectively. Solubilization of the stover and sugar production by enzymatic hydrolysis (Trichoderma viride cellulase) of the solid residue and the dissolved solids were used to measure the effect of caustic treatment. At 150 degrees C and 2% NaOH concentration, 65% of the original stover was dissolved after 5 min and 52% saccharificatin (g sugar/g stover) of the residue and dissolved solids by enzymatic hydrolysis was achieved compared to 20% for untreated corn stover.  相似文献   

18.
Different steam explosion conditions were applied to Salix chips and the effect of this pretreatment was evaluated by running both enzymatic hydrolysis and biogas tests. Total enzymatic release of glucose and xylose increased with pretreatment harshness, with maximum values being obtained after pretreatment for 10 min at 210 °C. Harsher pretreatment conditions did not increase glucose release, led to degradation of xylose and to formation of furfurals. Samples pretreated at 220 and 230 °C initially showed low production of biogas, probably because of inhibitors produced during the pretreatment, but the microbial community was able to adapt and showed high final biogas production. Interestingly, final biogas yields correlated well with sugar yields after enzymatic hydrolysis, suggesting that at least in some cases a 24 h enzymatic assay may be developed as a quick method to predict the effects of pretreatment of lignocellulosic biomass on biogas yields.  相似文献   

19.
Soybean hulls were evaluated as a resource for production of ethanol by the simultaneous saccharification and fermentation (SSF) process, and no pretreatment of the hulls was found to be needed to realize high ethanol yields with Saccharomyces cerevisiae D5A. The impact of cellulase, β-glucosidase and pectinase dosages were determined at a 15% biomass loading, and ethanol concentrations of 25–30 g/L were routinely obtained, while under these conditions corn stover, wheat straw, and switchgrass produced 3–4 times lower ethanol yields. Removal of carbohydrates also concentrated the hull protein to over 25% w/w from the original roughly 10%. Analysis of the soybean hulls before and after fermentation showed similar amino acid profiles including an increase in the essential amino acids lysine and threonine in the residues. Thus, eliminating pretreatment should assure that the protein in the hulls is preserved, and conversion of the carbohydrates to ethanol with high yields produces a more concentrated and valuable co-product in addition to ethanol. The resulting upgraded feed product from soybean hulls would likely to be acceptable to monogastric as well as bovine livestock.  相似文献   

20.
Wan C  Zhou Y  Li Y 《Bioresource technology》2011,102(10):6254-6259
Soybean straw was pretreated with either liquid hot water (LHW) (170-210 °C for 3-10 min) or alkaline soaking (4-40 g NaOH/100 g dry straw) at room temperature to evaluate the effects on cellulose digestibility. Nearly 100% cellulose was recovered in pretreated solids for both pretreatment methods. For LHW pretreatment, xylan dissolution from the raw material increased with pretreatment temperature and time. Cellulose digestibility was correlated with xylan dissolution. A maximal glucose yield of 70.76%, corresponding to 80% xylan removal, was obtained with soybean straw pretreated at 210 °C for 10 min. NaOH soaking at ambient conditions removed xylan up to 46.37% and the subsequent glucose yield of pretreated solids reached up to 64.55%. Our results indicated LHW pretreatment was more effective than NaOH soaking for improving cellulose digestibility of soybean straw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号