首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Oftentimes, corn processors believe that ground corn (raw material) and distillers dried grains with solubles (DDGS) are interrelated in certain quality parameters. Yet, previous studies, although rather limited, have not established this relationship. In this study, six ground corn samples and their resulting DDGS were analyzed for particle size distribution (PSD), using a series of six selected US standard sieves: Nos. 8, 12, 18, 35, 60, and 100, and a pan. The original sample and sieve sized fractions were measured for contents of moisture, protein, oil, ash and starch, and surface color. Total carbohydrate (CHO) and total non-starch CHO were also calculated. Results show that the geometric mean diameter (dgw) of particles varied with individual corn and DDGS samples, and that dgw of DDGS was larger than that of corn (0.696 vs. 0.479 mm, average values), indicating that during conversion of corn to DDGS, certain particles became enlarged. For dgw and mass frequency of individual particle size classes, the relationship between ground corn and DDGS varied, but PSD of the whole sample was well correlated between them (r = 0.807). Upon conversion from corn to DDGS, on an average, protein was concentrated 3.59 times; oil, 3.40 times; ash, 3.32 times; and total non-starch CHO, 2.89 times. There were some positive correlations in contents of protein and non-starch CHO and in L value between corn and DDGS. Yet, variations in nutrients and color attributes were larger in DDGS than in corn. For either corn or DDGS, these variations were larger in sieved fractions than in the whole fraction. Raw material, processing method and addition of yeasts are among major factors considered for causing larger variations in these attributes among DDGS. The study partially supports the common belief by processors that quality attributes of corn affect those of DDGS.  相似文献   

2.
Diet has been implicated as a major factor impacting clinical disease expression of swine dysentery and Brachyspira hyodysenteriae colonization. However, the impact of diet on novel pathogenic strongly beta-hemolytic Brachyspira spp. including “B. hampsonii” has yet to be investigated. In recent years, distillers dried grains with solubles (DDGS), a source of insoluble dietary fiber, has been increasingly included in diets of swine. A randomized complete block experiment was used to examine the effect of increased dietary fiber through the feeding of DDGS on the incidence of Brachyspira-associated colitis in pigs. One hundred 4-week-old pigs were divided into five groups based upon inocula (negative control, Brachyspira intermedia, Brachyspira pilosicoli, B. hyodysenteriae or “B. hampsonii”) and fed one of two diets containing no (diet 1) or 30% (diet 2) DDGS. The average days to first positive culture and days post inoculation to the onset of clinical dysentery in the B. hyodysenteriae groups was significantly shorter for diet 2 when compared to diet 1 (P = 0.04 and P = 0.0009, respectively). A similar difference in the average days to first positive culture and days post inoculation to the onset of clinical dysentery was found when comparing the “B. hampsonii” groups. In this study, pigs receiving 30% DDGS shed on average one day prior to and developed swine dysentery nearly twice as fast as pigs receiving 0% DDGS. Accordingly, these data suggest a reduction in insoluble fiber through reducing or eliminating DDGS in swine rations should be considered an integral part of any effective disease elimination strategy for swine dysentery.  相似文献   

3.
This study focused on the detection of value-added co-products in dried distiller’s grain plus soluble (DDGS), a possibility that could open new avenues for further processing and marketing of DDGS and improving economic sustainability of ethanol industry. Varieties of triticale, wheat and two benchmarks, CPS wheat and Pioneer Hi-Bred corn, were fermented using two very high gravity (VHG) fermentation approaches: jet-cooking and raw starch processing (STARGEN fermentation). DDGS from STARGEN fermentation could be promising sources of value-added co-products. Pronghorn triticale DDGS (STARGEN fermentation) had the highest concentration of sterols (3.7 mg/g), phenolic compounds (13.61 mg GAE/g), and β-glucan (2.07%). CDC Ptarmigan DDGS (STARGEN fermentation) had the highest concentration of tocopherols and tocotrienols (107.0 μg/g), 1.93% of β-glucan, and 53.0 mg/g of fatty acids. AC Reed DDGS (STARGEN method) showed 1.97% of β-glucan. This study shows that proper choice of fermentation approach and feedstock for ethanol production could improve commercial quality of DDGS.  相似文献   

4.
Increase in the demand for ethanol has resulted in growth in the dry grind (DG) ethanol industry. In DG processing, the whole corn kernel is fermented, resulting in two main coproducts, ethanol and distillers dried grains with solubles (DDGS). Marketing of DDGS is critical to the economic stability of DG plants. The composition of DDGS can vary considerably; this reduces market value. Factors that cause variation in composition need to be evaluated. The objective was to determine the relationship between composition of corn and composition of DDGS. Samples of corn and DDGS were obtained from a DG ethanol plant and analyzed for protein, fat, starch and other nutrients. Concentrations of protein, fiber and starch were similar to published data for corn but were higher for DDGS. Coefficients of variation for protein fat and fiber concentrations were similar for corn and DDGS. There were no significant correlations between concentrations of components in corn and those in DDGS. Variation in the composition of DDGS was not related to variation in corn composition and probably was due to variation in processing streams or processing techniques. This implies that reducing the variation in composition of DDG will require modification of processing strategies.  相似文献   

5.
The dry milling ethanol industry produces distiller's grains as major co-products, which are composed of unhydrolyzed and unfermented polymeric sugars. Utilization of the distiller's grains as an additional source of fermentable sugars has the potential to increase overall ethanol yields in current dry grind processes. In this study, controlled pH liquid hot water pretreatment (LHW) and ammonia fiber expansion (AFEX) treatment have been applied to enhance enzymatic digestibility of the distiller's grains. Both pretreatment methods significantly increased the hydrolysis rate of distiller's dried grains with solubles (DDGS) over unpretreated material, resulting in 90% cellulose conversion to glucose within 24h of hydrolysis at an enzyme loading of 15FPU cellulase and 40 IU beta-glucosidase per gram of glucan and a solids loading of 5% DDGS. Hydrolysis of the pretreated wet distiller's grains at 13-15% (wt of dry distiller's grains per wt of total mixture) solids loading at the same enzyme reduced cellulose conversion to 70% and increased conversion time to 72h for both LHW and AFEX pretreatments. However, when the cellulase was supplemented with xylanase and feruloyl esterase, the pretreated wet distiller's grains at 15% or 20% solids (w/w) gave 80% glucose and 50% xylose yields. The rationale for supplementation of cellulases with non-cellulolytic enzymes is given by Dien et al., later in this journal volume. Fermentation of the hydrolyzed wet distiller's grains by glucose fermenting Saccharomyces cerevisiae ATCC 4124 strain resulted in 100% theoretical ethanol yields for both LHW and AFEX pretreated wet distiller's grains. The solids remaining after fermentation had significantly higher protein content and are representative of a protein-enhanced wet DG that would result in enhanced DDGS. Enhanced DDGS refers to the solid product of a modified dry grind process in which the distiller's grains are recycled and processed further to extract the unutilized polymeric sugars. Compositional changes of the laboratory generated enhanced DDGS are also presented and discussed.  相似文献   

6.
Liu K 《Bioresource technology》2008,99(17):8421-8428
Eleven distillers dried grains with solubles (DDGS), processed from yellow corn, were collected from different ethanol processing plants in the US Midwest area. Particle size distribution (PSD) by mass of each sample was determined using a series of six selected US standard sieves: Nos. 8, 12, 18, 35, 60, and 100, and a pan. The original sample and sieve sized fractions were measured for surface color and contents of moisture, protein, oil, ash, and starch. Total carbohydrate (CHO) and total non-starch CHO were also calculated. Results show that there was a great variation in composition and color among DDGS from different plants. Surprisingly, a few DDGS samples contained unusually high amounts of residual starch (11.1-17.6%, dry matter basis, vs. about 5% of the rest), presumably resulting from modified processing methods. Particle size of DDGS varied greatly within a sample and PSD varied greatly among samples. The 11 samples had a mean value of 0.660mm for the geometric mean diameter (d(gw)) of particles and a mean value of 0.440mm for the geometric standard deviation (S(gw)) of particle diameters by mass. The majority had a unimodal PSD, with a mode in the size class between 0.5 and 1.0mm. Although PSD and color parameters had little correlation with composition of whole DDGS samples, distribution of nutrients as well as color attributes correlated well with PSD. In sieved fractions, protein content, L and a color values negatively while contents of oil and total CHO positively correlated with particle size. It is highly feasible to fractionate DDGS for compositional enrichment based on particle size, while the extent of PSD can serve as an index for potential of DDGS fractionation. The above information should be a vital addition to quality and baseline data of DDGS.  相似文献   

7.
The objective of this study was to examine the ethanol yield potential of three barley varieties (Xena, Bold, and Fibar) in comparison to two benchmarks, corn and wheat. Very high gravity (VHG; 30% solids) fermentations using both conventional and Stargen 001 enzymes for starch hydrolysis were carried out as simultaneous saccharification and fermentation. The grains and their corresponding dried distiller''s grain with solubles (DDGS) were also analyzed for nutritional and value-added characteristics. A VHG traditional fermentation approach utilizing jet-cooking fermentation revealed that both dehulled Bold and Xena barley produced ethanol concentrations higher than that produced by wheat (12.3, 12.2, and 11.9%, respectively) but lower than that produced by corn (13.8%). VHG-modified Stargen-based fermentation of dehulled Bold barley demonstrated comparable performance (14.3% ethanol) relative to that of corn (14.5%) and wheat (13.3%). Several important components were found to survive fermentation and were concentrated in DDGS. The highest yield of phenolics was detected in the DDGS (modified Stargen 001, 20% solids) of Xena (14.6 mg of gallic acid/g) and Bold (15.0 mg of gallic acid/g) when the hull was not removed before fermentation. The highest concentration of sterols in DDGS from barley was found in Xena (3.9 mg/g) when the hull was included. The DDGS recovered from corn had the highest concentration of fatty acids (72.6 and 77.5 mg/g). The DDGS recovered from VHG jet-cooking fermentations of Fibar, dehulled Bold, and corn demonstrated similar levels of tocopherols and tocotrienols. Corn DDGS was highest in crude fat but was lowest in crude protein and in vitro energy digestibility. Wheat DDGS was highest in crude protein content, similar to previous studies. The barley DDGS was the highest in in vitro energy digestibility.The growing need for energy independence and proposed renewable fuels has led recently to a major expansion of fuel ethanol production. In North America, this activity primarily uses corn as a feedstock. The need to find other cost-effective and efficient grains for ethanol production has increased in significance. Cereal grains are high in starch and are currently being utilized for ethanol production (26, 41). To ensure long-term viability of the industry, fermentation strategies that focus on holistic utilization of the feedstock that maximize value addition will increase in importance. The focus of industry is slowly moving from biorefineries that anticipate subsidy and government policy to integrated biorefineries that produce multiple products. Multiple product streams and integrated by-product management are thought to ensure better financial stability and opportunities for diversified income streams.Barley is a potential candidate for industrial ethanol production (10) since its ethanol yield is comparable to that of wheat but below that of American corn, which is currently the preferred industrial feedstock. Barley contains on average 63 to 65% starch, 8 to 13% protein, 2 to 3% fat, 1 to 1.5% soluble gums, 8 to 10% hemicellulose, ca. 2.9% lignin, and 2 to 2.5% ash (15, 27). Barley also contains a hull that could be fermented using cellulolytic enzymes, providing opportunities for integrated biorefineries that utilize more feedstocks than corn. Potential coproducts of ethanol production from barley include protein, fiber, fatty acids, tocopherols, and tocotrienols (40). The nutritional value of barley, based on amino acid content, is greater than that for corn and is not significantly affected by the fermentation process (40). A range of nutraceutical and functional food products, as well as amylase, amylase inhibitors, β-amylase, and oxalate oxidase, are found in barley grains and may have potential for extraction and commercial applications (6, 22, 33). Hull-less barley lines, high in both protein (particularly lysine) and starch, and low in fiber, have recently been developed (11, 14, 32). Since starch recovery and thus ethanol yields are lower for barley than corn, coproduct recovery becomes even more essential for profitability (43).Enzymes used for the pretreatment of grains prior to fermentation have traditionally been α-amylases and glucoamylases. The α-amylase decreases the viscosity of the mash (25) and performs the liquefaction of the pretreatment process. The liquefaction step is typically done at high temperatures of 100 to 120°C (38) with direct steam injection (jet-cooking). The α-amylase action serves to break starch at α-(1,4)-glucosidic bonds, producing smaller dextrin chains. During the saccharification step of the pretreatment, the dextrins produced by α-amylase are then acted on by glucoamylase. This conventional method has a considerable economic drawback, because the mash must undergo a cooking step prior to fermentation. Many industrial ethanol producers use jet-cooking to raise the mash temperature to 100 to 120°C. Because of this temperature requirement, the conventional process uses a large amount of energy to produce ethanol.Recently, a new line of cold starch hydrolyzing enzymes was developed. An example of these enzymes is Stargen 001, which is referred to as a raw starch hydrolyzing enzyme because starch is hydrolyzed to fermentable sugars while the temperature remains at or below a temperature of 48°C (38). Stargen 001 replaces the liquefaction and saccharification steps performed by conventional digestion enzymes (i.e., α-amylase and glucoamylase) and releases free glucose and other fermentable sugars for use by yeast cells. Stargen 001 is a cocktail of modified α-amylase and glucoamylase enzymes that work together to convert starch into dextrins, followed by the hydrolysis of dextrins to fermentable sugars (37, 38). With the absence of a cooking stage in the cold hydrolysis method, the potential exists that the dried distiller''s grain plus solubles (DDGS) produced by fermentation would have less damage so that the proteins contained in the DDGS could be of more value (18).The objectives of the present study were to examine the ethanol yield potentials of three barley varieties (Xena, Bold, and Fibar) and two benchmark grains (Pioneer Hi-Bred corn and CPS wheat) using conventional (jet-cooking) and cold starch hydrolysis with Stargen 001. In addition, dehulling was tested for the potential to increase ethanol yields, because hull does not contain fermentable starch; both hulled and dehulled mashes were studied where possible. The grains and their corresponding DDGS were analyzed for nutritional value and the presence of potential value-added products such as fatty acids, tocopherols, tocotrienols, sterols, and polyphenols.  相似文献   

8.
The energy security needs of energy importing nations continue to escalate. It is clear that biofuels can help meet some of the increasing need for energy. Theoretically, these can be produced from a variety of biological materials, including agricultural residues (such as corn stover and wheat straw), perennial grasses, legumes, algae, and other biological materials. Currently, however, the most heavily utilized material is corn starch. Industrial fuel ethanol production in the US primarily uses corn, because it is readily converted into fuel at a relatively low cost compared to other biomass sources. The production of corn-based ethanol in the US is dramatically increasing. As the industry continues to grow, the amount of byproducts and coproducts also increases. At the moment, the nonfermentable residues (which are dried and sold as distillers dried grains with solubles – DDGS) are utilized only as livestock feed. The sale of coproducts provides ethanol processors with a substantial revenue source and significantly increases the profitability of the production process. Even though these materials are used to feed animals in local markets, as the size and scope of the industry continues to grow, the need to ship large quantities of coproducts grows as well. This includes both domestic as well as international transportation. Value-added processing options offer the potential to increase the sustainability of each ethanol plant, and thus the industry overall. However, implementation of new technologies will be dependent upon how their costs interact with current processing costs and the logistics of coproduct deliveries. The objective of this study was to examine some of these issues by developing a computer model to determine potential cost ramifications of using various alternative technologies during ethanol processing. This paper focuses specifically on adding a densification unit operation (i.e., pelleting) to produce value-added DDGS at a fuel ethanol manufacturing plant. We have examined the economic implications of pelleting DDGS for varying DDGS production rates (100–1000 tons/d) and pelleting rates (0–100%), for a series of DDGS sales prices ($50–$200/ton). As the proportion of pelleting increases, the cost of transporting DDGS to distant markets drastically declines, because the rail cars can be filled to capacity. For example, at a DDGS sales price of $50/ton, 100% pelleting will reduce shipping costs (both direct and indirect) by 89% compared to shipping the DDGS in bulk form (i.e., no pelleting), whereas at a DDGS sales price of $200/ton, it will reduce costs by over 96%. It is clear that the sustainability of the ethanol industry can be improved by implementing pelleting technology for the coproducts, especially at those plants that ship their DDGS via rail.  相似文献   

9.
Biodegradation of chicken feathers waste directed by Bacillus subtilis DB 100 (p5.2) cells was successfully carried out in 14 L Bio Flo 110 laboratory scale fermentor. Seven liters of feathers-based modified basal medium II, feathers-based tap water and feathers-based distilled water separately in the fermentor were inoculated with activated bacterial cells. The fermentation processes were conducted at 37 °C, 700 rpm agitation speed and 0.7 vvm air flow rate in the absence of kanamycin. Highest net levels of released feathers hydrolysis end products [soluble proteins and NH2-free amino groups] and keratinolytic alkaline protease activity in the fermentor were greatly comparable to those of shake flasks. Interestingly, the plasmid (p5.2) inside the recombinant B. subtilis cells growing in the fermentor displayed 100% stability till the fifth day of incubation and this presents a great challenge. Data certainly would encourage the transfer to larger scale fermentors to carry out feathers biodegradation process.  相似文献   

10.
Lei H  Ren S  Wang L  Bu Q  Julson J  Holladay J  Ruan R 《Bioresource technology》2011,102(10):6208-6213
Microwave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to find out the effect of process variables on the biofuel (bio-oil and syngas) conversion yield and establish prediction models. Bio-oil recovery was in the range of 26.5-50.3 wt.% of the biomass. Biochar yields were 23.5-62.2% depending on the pyrolysis conditions. The energy content of DDGS bio-oils was 28 MJ/kg obtained at the 650 °C and 8 min, which was about 66.7% of the heating value of gasoline. GC/MS analysis indicated that the biooil contained a series of important and useful chemical compounds: aliphatic and aromatic hydrocarbons. At least 13% of DDGS bio-oil was the same hydrocarbon compounds found in regular unleaded gasoline.  相似文献   

11.
Distillers’ grains and corn fiber are the coproducts of the dry grind and wet corn milling industries, respectively. Availability of distillers’ grains and corn fiber at the ethanol plant and their high levels of lignocellulosic material make them attractive feedstock for conversion to ethanol. In this study, dilute sulfuric acid hydrolysis for the conversion of distillers’ grains and corn fiber to monomeric sugars and the formation of furfural were investigated. The extent of solubilization of biomass beyond monomeric sugars was also monitored. Biomass loadings in the range of 5–20 wt.% at 5% intervals, acid concentrations in the range of 0.5–1.5 vol.% at 0.5% intervals, and temperatures of 120 and 140 °C were studied. The highest yields of monomeric sugars were observed when the least amount of biomass loading was pretreated with the highest concentration of sulfuric acid and when the temperature was 140 °C. For the majority of the cases under consideration, the most effective period of hydrolysis appeared to be during the initial 20–30 min of the reaction. Formation of furfural during the course of hydrolysis was significantly lower at 120 °C and also lower for the distillers’ grains samples compared with the corn fiber samples. The total amount of the solubilized matter during the hydrolysis was significantly higher than the amount of the monomeric sugars. Analyses according to standard procedure were performed to quantify moisture, oil, carbohydrates, and ash in distillers’ grains and corn fiber samples. The total carbohydrate content of distillers’ grains and corn fiber were 57.7 ± 2.0 and 77.0 ± 1.0 wt.%, respectively. The presented results will provide a foundation for the suitability of the pretreated distillers’ grains and corn fiber for enzymatic hydrolysis step.  相似文献   

12.
Whole crop third cut alfalfa, brown mid-rib (bmr) corn, and corn were chopped and inoculated with one of four microbial inoculants used. Uninoculated silage was the control treatment. Each crop was ensiled in four mini-silos (1 L glass jars) per treatment. All silos were fermented for 60 days at room temperature (22 °C), and then they were opened and analyzed for fermentation products, fiber constituents and N fractions. A fraction of wet silage was ground with a blender for 30 s. In vitro gas production was measured in 160 ml sealed serum vials at 3, 6, 9, 24, and 48 h using the wet ground silage. At 9 and 48 h, rumen fluid was analyzed for volatile fatty acids (VFA) and microbial biomass yield (MBY). In all the three crops, the four inoculants produced only minor changes in pH and fermentation products during ensiling. Of the variables measured, soluble nonprotein N fractions were the characteristics most often affected by some inoculants. At 9 h incubation, in vitro gas production and VFA did not differ between control and inoculated silages, but MBY did. Among crops, alfalfa and corn silages had higher MBY than did bmr corn silage. Among inoculants, three of the four inoculated silages produced more MBY than did control. At 48 h, alfalfa silage produced higher MBY than did corn or bmr silage, and two of the inoculated silages had more MBY than did the control. There was no inoculant by crop interaction. Results suggest that some silage inoculants are capable of altering rumen fermentation, even in cases where effects on silage fermentation are small, and that this effect may be linked to better preservation of crop protein during ensiling.  相似文献   

13.
In this study, we investigated the kinetics of linoleic acid production via lipase-mediated hydrolysis of corn DDGS oil in a batch reactor with continuous mechanical agitation and developed a kinetic model that incorporated the product inhibition to study the complete hydrolysis. The model agreed very well with observed data; though situations with low enzyme dosage or low stirring rates were modeled successfully without product inhibition, actual product concentration in such situations was too low to exert any inhibitory effects. Increasing the enzyme concentration increased hydrolysis, and beyond certain enzyme concentrations, effects tended to fade away because of excessive enzyme desorption from the interface. An enzyme dosage within the range of 40–60 KLU/L of oil dispersion could be successfully applied for a substrate concentration of 25–50 g/L of DDGS oil. Increasing the agitation rates improved enzymatic hydrolysis, but a higher stirring rate of 1000 rpm moderately improved production of linoleic acid compared with a stirring rate of 750 rpm. Within the range of substrate concentrations studied, enzymatic inhibition was moderate but still evident. The high degree of hydrolysis (i.e., ∼96% of theoretical linoleic acid yield) from DDGS oil suggests this method has potential for commercial production of linoleic acid.  相似文献   

14.
The objectives of this study were to determine the effects of conjugated linoleic acid (CLA) or betaine on the growth performance, carcass characteristics and fatty acid composition in backfat and belly fat of pigs fed distillers dried grains with solubles (DDGS). Thirty-two (60±2 kg) crossbred barrows (Duroc×Landrace×Yorkshine) were assigned to one of four diets randomly: (1) the control diet containing no corn DDGS (control group); (2) the diet containing 30% corn DDGS (DDGS-fed group); (3) the diet containing 30% corn DDGS and 10 g/kg CLA (CLA-fed group); (4) the diet containing 30% corn DDGS and 1 g/kg BET (BET-fed group). The pigs fed DDGS showed that the percentages of C18:2, polyunsaturated fatty acid (PUFA) and iodine value (IV) increased, while C18:1, saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) decreased. Pigs fed the DDGS+CLA or DDGS+betaine diets showed the increased percentage of SFA, and the decreased percentage of C18:2, PUFA and IV. In conclusion, results confirmed that the diets containing 30% DDGS had no detrimental effects on growth performance, but increased the percentage of PUFA and IV and decreased the percentage of SFA and MUFA in the backfat and belly fat. However, supplementation with CLA or BET can part reverse these effects on carcass fat in finishing pigs.  相似文献   

15.
External nutrient supplementation and detoxification of hydrolysate significantly increase the production cost of cellulosic ethanol. In this study, we investigated the feasibility of fermenting cellulosic hydrolysates without washing, detoxification or external nutrient supplementation using ethanologens Escherichia coli KO11 and the adapted strain ML01 at low initial cell density (16 mg dry weight/L). The cellulosic hydrolysates were derived from enzymatically digested ammonia fiber expansion (AFEX)-treated corn stover and dry distiller's grain and solubles (DDGS) at high solids loading (18% by weight). The adaptation was achieved through selective evolution of KO11 on hydrolysate from AFEX-treated corn stover. All cellulosic hydrolysates tested (36-52 g/L glucose) were fermentable. Regardless of strains, metabolic ethanol yields were near the theoretical limit (0.51 g ethanol/g consumed sugar). Volumetric ethanol productivity of 1.2 g/h/L was achieved in fermentation on DDGS hydrolysate and DDGS improved the fermentability of hydrolysate from corn stover. However, enzymatic hydrolysis and xylose utilization during fermentation were the bottlenecks for ethanol production from corn stover at these experimental conditions. In conclusion, fermentation under the baseline conditions was feasible. Utilization of nutrient-rich feedstocks such as DDGS in fermentation can replace expensive media supplementation.  相似文献   

16.
Dried distillers' grains with solubles (DDGS), a co-product of corn ethanol production, was investigated as a feedstock for additional ethanol production. DDGS was pretreated with liquid hot-water (LHW) and ammonia fiber explosion (AFEX) processes. Cellulose was readily converted to glucose from both LHW and AFEX treated DDGS using a mixture of commercial cellulase and beta-glucosidase; however, these enzymes were ineffective at saccharifying the xylan present in the pretreated DDGS. Several commercial enzyme preparations were evaluated in combination with cellulase to saccharify pretreated DDGS xylan and it was found that adding commercial grade (e.g. impure) pectinase and feruloyl esterase (FAE) preparations were effective at releasing arabinose and xylose. The response of sugar yields for pretreated AFEX and LHW DDGS (6wt%/solids) were determined for different enzyme loadings of FAE and pectinase and modeled as a response surfaces. Arabinose and xylose yields rose with increasing FAE and pectinase enzyme dosages for both pretreated materials. When hydrolyzed at 20wt%/solids with the same blend of commercial enzymes, the yields were 278 and 261g sugars (i.e. total of arabinose, xylose, and glucose) per kg of DDGS (dry basis, db) for AFEX and LHW pretreated DDGS, respectively. The pretreated DDGS's were also evaluated for fermentation using Saccharomyces cerevisiae at 15wt%/solids. Pretreated DDGS were readily fermented and were converted to ethanol at 89-90% efficiency based upon total glucans; S. cerevisiae does not ferment arabinose or xylose.  相似文献   

17.
Distillers dried grains with solubles (DDGS) are highly susceptible to lipid oxidation because DDGS contain about 10% crude fat, which is largely composed of polyunsaturated fatty acids. l-carnitine serves an important function in fatty acids β-oxidation, and also has antioxidant properties. The objective of this study was to examine the effects of l-carnitine in the DDGS diet of gestating and lactating sows on reproductive performance, milk composition and antioxidant status of sows and their offspring. One hundred and twenty sows (Landrace×Large white, mean parity 4.2, initial BW 230 kg) were randomly allotted to 1 of 4 dietary treatments (n=30 sows/treatment). Treatments were arranged as a 2×2 factorial with two levels of dietary DDGS (0 v. 250 g/kg in gestating diets and 400 g/kg in lactating diets) and two levels of dietary l-carnitine (0 v. 100 mg/kg in gestating diets and 0 v. 200 mg/kg in lactating diets). Distillers dried grains with solubles had no significant effect on litter size but significantly reduced the birth weights and weaning weights of piglets (P<0.05). Distillers dried grains with solubles reduced the antioxidant enzyme activities (P<0.05) and increased the malondialdehyde level in the plasma of sows on day 60 of gestation (P=0.004) and day 14 of lactation (P=0.008). The compositions of colostrum and milk were not affected by inclusion of DDGS and dietary l-carnitine (P>0.05). Supplementing the diets with l-carnitine had no significant effect of total litter size (P>0.05) but increased the number of piglets born alive and piglets weaned, birth weight and weaning weight of piglets and litter weight at birth and weaning (P<0.05). l-carnitine supplementation also increased the concentration of l-carnitine in milk and l-carnitine status of piglets (P<0.05). The antioxidant enzyme activities of new born and weaning piglets were increased (P<0.05) by maternal dietary l-carnitine but this did not extend to finishing pigs. In conclusion, including DDGS in the sows diet could induce oxidative stress, which may be associated with the reduced individual birth and weaning weight of piglets. Dietary l-carnitine supplementation improved the antioxidant and l-carnitine status of sows, which may be associated with the improved reproduction and piglet performance and the antioxidant status of piglets at birth and weaning. There were no interactions between DDGS and l-carnitine.  相似文献   

18.
Currently in America the biofuel ethanol is primarily being produced by the dry grind technique to obtain the starch contained in the corn grains and subsequently subjected to fermentation. This so-called 1st generation technology has two setbacks; first the lingering debate whether its life cycle contributes to a reduction of fossil fuels and the animal feed sectors future supply/demand imbalance caused by the co-product dry distillers grains (DDGS). Additional utilization of the cellulosic components and separation of the proteins for use as chemical precursors have the potential to alleviate both setbacks. Several different corn feedstock layouts were treated with 2nd generation ammonia fiber expansion (AFEX) pre-treatment technology and tested for protein separation options (protease solubilization). The resulting system has the potential to greatly improve ethanol yields with lower bioprocessing energy costs and satisfy a significant portion of the organic chemical industry.  相似文献   

19.
Soluble starch-synthesizing enzymes, starch synthase (SSS) and starch-branching enzyme (SBE), were isolated, fractionated, and purified from white potato tubers (Solanum tuberosum) on a large scale. Five steps were used: potato tuber extract from 2 kg of peeled potatoes, two acetone precipitations, and two fractionations on a large ultrafiltration polysulfone hollow fiber 100 kDa cartridge. Three kinds of fractions were obtained: (1) mixtures of SSS and SBE; (2) SSS, free of SBE; and (3) SBE, free of SSS. Contaminating enzymes (amylase, phosphorylase, and disproportionating enzyme) and carbohydrates were absent from the 2nd acetone precipitate and from the column fractions, as judged by the Molisch test and starch triiodide test. Activity yields of 122% (300,000-400,000 units) of SSS fractions and 187% (40,000-50,000 units) of SBE fractions were routinely obtained from the cartridge. Addition of 0.04% (w/v) polyvinyl alcohol 50 K and 1 mM dithiothreitol to the glycine buffer (pH 8.4) gave long-term stability and higher yields of SSS and SBE, due to activation of inactive enzymes. Several SSS and SBE fractions from the two fractionations had very high specific activities, indicating high degrees of purification. Polyacrylamide gel electrophoresis of selected SSS and SBE fractions gave two to five SSS and/or SBE activity bands, corresponding to the one to five protein bands present in the 2nd acetone precipitate.  相似文献   

20.
With rapid growth of fuel ethanol industry, and concomitant increase in distillers dried grains with solubles (DDGS), new corn fractionation technologies that reduce DDGS volume and produce higher value coproducts in dry grind ethanol process have been developed. One of the technologies, a dry degerm, defiber (3D) process (similar to conventional corn dry milling) was used to separate germ and pericarp fiber prior to the endosperm fraction fermentation. Recovery of germ and pericarp fiber in the 3D process results in removal of lipids from the fermentation medium. Biosynthesis of lipids, which is important for cell growth and viability, cannot proceed in strictly anaerobic fermentations. The effects of ten different lipid supplements on improving fermentation rates and ethanol yields were studied and compared to the conventional dry grind process. Endosperm fraction (from the 3D process) was mixed with water and liquefied by enzymatic hydrolysis and was fermented using simultaneous saccharification and fermentation. The highest ethanol concentration (13.7% v/v) was achieved with conventional dry grind process. Control treatment (endosperm fraction from 3D process without lipid supplementation) produced the lowest ethanol concentration (11.2% v/v). Three lipid treatments (fatty acid ester, alkylphenol, and ethoxylated sorbitan ester 1836) were most effective in improving final ethanol concentrations. Fatty acid ester treatment produced the highest final ethanol concentration (12.3% v/v) among all lipid supplementation treatments. Mean final ethanol concentrations of alkylphenol and ethoxylated sorbitan ester 1836 supplemented samples were 12.3 and 12.0% v/v, respectively.Mention of brand or firm names does not constitute an endorsement by University of Illinois or USDA above others of similar nature not mentioned  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号