首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Intensive livestock production systems are particularly vulnerable to natural or intentional (bioterrorist) infectious disease outbreaks. Large numbers of animals housed within a confined area enables rapid dissemination of most infectious agents throughout a herd. Rapid containment is key to controlling any infectious disease outbreak, thus depopulation is often undertaken to prevent spread of a pathogen to the larger livestock population. In that circumstance, a large number of livestock carcasses and contaminated manure are generated that require rapid disposal.Composting lends itself as a rapid-response disposal method for infected carcasses as well as manure and soil that may harbor infectious agents. We designed a bio-contained mortality composting procedure and tested its efficacy for bovine tissue degradation and microbial deactivation. We used materials available on-farm or purchasable from local farm supply stores in order that the system can be implemented at the site of a disease outbreak. In this study, temperatures exceeded 55°C for more than one month and infectious agents implanted in beef cattle carcasses and manure were inactivated within 14 days of composting. After 147 days, carcasses were almost completely degraded. The few long bones remaining were further degraded with an additional composting cycle in open windrows and the final mature compost was suitable for land application. Duplicate compost structures (final dimensions 25 m x 5 m x 2.4 m; L x W x H) were constructed using barley straw bales and lined with heavy black silage plastic sheeting. Each was loaded with loose straw, carcasses and manure totaling ~95,000 kg. A 40-cm base layer of loose barley straw was placed in each bunker, onto which were placed 16 feedlot cattle mortalities (average weight 343 kg) aligned transversely at a spacing of approximately 0.5 m. For passive aeration, lengths of flexible, perforated plastic drainage tubing (15 cm diameter) were placed between adjacent carcasses, extending vertically along both inside walls, and with the ends passed though the plastic to the exterior. The carcasses were overlaid with moist aerated feedlot manure (~1.6 m deep) to the top of the bunker. Plastic was folded over the top and sealed with tape to establish a containment barrier and eight aeration vents (50 x 50 x 15 cm) were placed on the top of each structure to promote passive aeration. After 147 days, losses of volume and mass of composted materials averaged 39.8% and 23.7%, respectively, in each structure.  相似文献   

2.
The effects of different straw types and organic and inorganic nitrogen (N) sources on the chemical composition and odor concentration (OC) of mushroom composting emissions, compost parameters, and mushroom yield were examined using bench-scale and large-scale (windrows and aerated tunnels) composting systems. There were close correlations between the butanol or combined H2S+dimethyl sulfide (DMS) concentration and OC of air samples taken from different composting ingredients (r=0.83 and 0.76–0.87, P<0.01, for loge-transformed data). Differences in N availability, in terms of NH3 and N losses during composting, were found between different N sources. Materials in which the N was less available (chipboard and digester wastes, cocoa shells, ammonium sulfate) produced lower mushroom yields than materials in which the N was more readily available (poultry manure, urea, brewers' grains, hop and molasses wastes, cocoa meal). Replacement of poultry manure with the other N sources at 50–100% or wheat straw with rape, bean, or linseed straw in aerated tunnel or windrow composts reduced the OC and emissions of odorous sulfur-containing compounds, but also reduced yield. Urea and cocoa meal may be suitable for “low odor” prewetting of straw, with addition of poultry manure immediately before aerated tunnel composting. Rape straw in compost reduces the formation of anaerobic zones and resulting odorous emissions, since it maintains its structure and porosity better than wheat straw. Journal of Industrial Microbiology & Biotechnology (2002) 29, 99–110 doi:10.1038/sj.jim.7000292 Received 08 January 2002/ Accepted in revised form 20 June 2002  相似文献   

3.
Determination of thermal properties of composting bulking materials   总被引:2,自引:0,他引:2  
Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric heat capacity of 12 compost bulking materials were determined in this study. Thermal properties were determined at varying bulk densities (1, 1.3, 1.7, 2.5, and 5 times uncompacted bulk density), particle sizes (ground and bulk), and water contents (0, 20, 50, 80% of water holding capacity and saturated condition). For the water content at 80% of water holding capacity, saw dust, soil compost blend, beef manure, and turkey litter showed the highest thermal conductivity (K) and volumetric heat capacity (C) (K: 0.12–0.81 W/m °C and C: 1.36–4.08 MJ/m3 °C). Silage showed medium values at the same water content (K: 0.09–0.47 W/m °C and C: 0.93–3.09 MJ/m3 °C). Wheat straw, oat straw, soybean straw, cornstalks, alfalfa hay, and wood shavings produced the lowest K and C values (K: 0.03–0.30 W/m °C and C: 0.26–3.45 MJ/m3 °C). Thermal conductivity and volumetric heat capacity showed a linear relationship with moisture content and bulk density, while thermal diffusivity showed a nonlinear relationship. Since the water, air, and solid materials have their own specific thermal property values, thermal properties of compost bulking materials vary with the rate of those three components by changing water content, bulk density, and particle size. The degree of saturation was used to represent the interaction between volumes of water, air, and solids under the various combinations of moisture content, bulk density, and particle size. The first order regression models developed in this paper represent the relationship between degree of saturation and volumetric heat capacity (r = 0.95–0.99) and thermal conductivity (r = 0.84–0.99) well. Improved knowledge of the thermal properties of compost bulking materials can contribute to improved thermodynamic modeling and heat management of composting processes.  相似文献   

4.
This study investigated whether composting methods differ in their impact on seed germination of Rumex obtusifolius (broad‐leaved dock). Weed seeds were buried in windrows of cattle farmyard manure, removed at monthly intervals and germinated during the course of 7 months. Composting methods differed in the maximum temperatures reached (63°C for conventional and biodynamic composting and 35°C for vermicomposting), the addition of 1000 m?2 earthworms (Eisenia fetida) for vermicomposting and the inoculation of biodynamic preparations for biodynamic composting. After 1 month in windrows, germination rate of Rumex seeds was significantly higher in vermicompost (48%) than in conventional (28%) or biodynamic compost (18%). After 2 months in windrows, 26% of the seeds germinated in vermicomposting windrows, while those inserted in conventional and biodynamic windrows showed a negligible germination (0% and 2%, respectively). After 3 and 4 months, only seeds under vermicomposting germinated (22% and 3%, respectively). No germination was determined when seeds were inserted for longer than 4 months in any of the treatments. Seeds stored at room temperature germinated at 89% over the course of the experiment. Results suggest that the maximum temperature reached in windrows is not the single main factor reducing weed seed germination during composting.  相似文献   

5.
The study was conducted to reveal the type of phosphorus (P) fractions present in mature compost prepared by co-composting paddy straw (P.S) with cattle manure (CM), farm yard manure (FYM) and poultry manure (PM), each added separately as nitrogen (N) and P source. A consortium of phytate mineralizing fungi developed by including Aspergillus niger ITCC 6719, Aspergillus flavus ITCC 6720 and Trichoderma harzianum ITCC 6721 was applied for recovery of P from plant and animal residues. Chemical evaluation of compost after 4 months of aerobic decomposition revealed that inoculation improved the sodium bicarbonate-extractable P content of CM and FYM supplemented P.S compost by 32.3% and 23.5% respectively compared with their respective un-inoculated control. However, the peak values for water soluble-P fractions were recorded in CM–straw compost followed by PM–straw compost. Fungal inoculation also improved the agronomic quality of PM–straw compost as the latter had the highest total P content and lowest C:N and E4/E6 ratio of 18:1 and 5.36:1 respectively. The recovery of organic P from agricultural residue has the potential to reduce the application of synthetic P fertilizer. P-enriched organic manure can offer potential environment and economic benefits to farmers under sustainable agriculture.  相似文献   

6.
The aim of this study was to investigate the composting of separated pig manure solids with or without a variety of bulking agents at a low initial C/N ratio (12.5-23.3). Compost stability was investigated using an oxygen uptake rate (OUR) test and compost maturity was investigated using a germination index test. All treatments showed typical patterns of compost temperature. Temperatures above 60 °C were achieved by Day 2, followed by a thermophilic phase (50-60 °C), which lasted for 1 to 2 weeks followed by a cooling phase. The stability of one of treatments which did not contain any bulking agent - OUR of 25 mmol O2 kg−1 OM hour−1 - was negatively affected by its initial high water content (69%). The addition of a bulking agent and initial water content below 60% were necessary to compost the separated solid fraction of pig manure at a low initial C/N ratio.  相似文献   

7.
Characterization of dairy cattle manure/wallboard paper compost mixture   总被引:5,自引:0,他引:5  
The aim of this research was to evaluate the use of manufacturing wallboard paper scraps as an alternative bulking agent for dairy cattle manure composting. The characteristics of the composting process were studied based on the changes in physico-chemical parameters and final compost quality. Composting of dairy cattle manure with wallboard paper was performed in a 481-L cylindrical reactor with vacuum-type aeration. Rapid degradation of organic matter was observed during the thermophilic stage of composting due to high microbial activity. High temperature and alkaline pH conditions promoted intense ammonia emission during the early stage of composting. The number of mesophilic and thermophilic microorganisms were found to be affected by changes in temperature at different composting stages. The total nitrogen (N), phosphorus (P), potassium (K), and sodium (Na) concentrations of the mixture did not change significantly after 28days of composting. However, the presence of gypsum in the paper scraps increased the calcium content of the final compost. The wallboard paper had no phyto-inhibitory effects as shown by high germination index of final compost (GI=99%).  相似文献   

8.
Livestock production systems utilize composting as a method of disposal of livestock mortalities, but there is limited information on the rate and extent of carcass decomposition. Detection of specific DNA fragments by PCR offers a method for investigating the degradation of carcasses and other biological materials during composting. However, the purity of extracted DNA is critical for successful PCR analysis. We applied a method to purify DNA from compost samples and have tested the method by analyzing bovine and plant DNA targets after 0, 4, and 12 month of composting. The concentration of organic matter from composted material posed a particular challenge in obtaining pure DNA for molecular analysis. Initially extracted DNA from composted piles at day 147 was discoloured, and PCR inhibitors prevented amplification of target plant or bovine gene fragments. Bovine serum albumin improved detection by PCR (25–50 μl final volume) through the removal of inhibitors, but only when concentrations of humic acids in extracted DNA were 1.0 ng μl−1 or less. Optimal purification of DNA from compost was achieved by chromatography using Sepharose 4B columns. The described DNA purification protocol enabled molecular monitoring of otherwise cryptic bovine and plant target genes throughout the composting process. The assay could likely be used to obtain PCR-amplifiable DNA that could be used for the detection of microbial pathogens in compost.  相似文献   

9.
The objective of this study was (a) to detect changes of the functional abilities of the microflora during composting of manure as a result of windrow turning frequency and (b) to detect differences between distinct zones within the windrows. Biolog GN microtiter plates containing 95 different carbon sources were inoculated with diluted suspensions of compost material containing 15,000 microorganisms per well (120 l). We found a dramatic shift in functional microbial community structure during the 8-week composting process. The shift was more rapid when the compost windrows were turned. The substrate use pattern in the outer, well-aerated zone of the unturned windrow was similar to that of the turned windrows. Microbial biomass and respiration decreased more rapidly in the turned than in the unturned windrows, indicating a different pace of compost maturation. The data suggest that the Biolog assay may be a suitable approach to determine compost maturity. Correspondence to: H. Insam  相似文献   

10.
Oxytetracycline (OTC) and chlortetracycline (CTC) are broad-spectrum antibiotics used in livestock production. Although laboratory-scale studies have shown that extractable concentrations of these compounds decrease over time within treated and untreated manures and soils, there is relatively little information from farm-scale experiments. The objective of this study was to determine the effect of different levels of management on manure pile temperature profiles and on the fate of OTC and CTC in manure from therapeutically treated calves. Four treatments were designed to span a range of management options – from simply piling up the manure to amending it with straw to increase aeration and adding insulating layers of straw. Replicate samples of antibiotic-containing calf manure were held at ambient temperature or placed in three locations within replicate 3 m3 piles of beef manure. During the 28-day incubation period, concentrations of buffer-extractable OTC and CTC/ECTC (the summed concentrations of CTC and its epimer 4-epi-chlortetracycline (ECTC)) in manure samples incubated at ambient temperature (11–24 °C) decreased 75% (from 18 to 4.6 mg kg−1 dry weight (DW)) and 90% (from 192 to 16 mg kg−1 DW), respectively. Concentrations of the CTC metabolite iso-chlortetracycline (ICTC) decreased 90% (from 37 to 3 mg kg−1 DW). OTC and CTC/ECTC concentrations in samples incubated for 28 days within a non-amended manure pile decreased 91% and >99%, respectively. During that period, the manure pile temperature ranged from 36 °C to 45 °C. Manure piles insulated with a blanket of straw and/or amended with straw (3:1, v/v) attained temperatures up to 70 °C and contained very low levels of OTC, CTC/ECTC, and ICTC (ranging from <0.1 to 0.4 mg kg−1 DW) after 28 days.  相似文献   

11.
In a bid to identify suitable microbial indicators of compost stability, the process evolution during windrow composting of poultry manure (PM), green waste (GW) and biowaste was studied. Treatments were monitored with regard to abiotic factors, respiration activity (determined using the SOUR test) and functional microflora. The composting process went through typical changes in temperature, moisture content and microbial properties, despite the inherent feedstock differences. Nitrobacter and pathogen indicators varied as a monotonous function of processing time. Some microbial groups have shown a potential to serve as fingerprints of the different process stages, but still they should be examined in context with respirometric tests and abiotic parameters. Respiration activity reflected well the process stage, verifying the value of respirometric tests to access compost stability. SOUR values below 1 mg O2/g VS/h were achieved for the PM and the GW compost.  相似文献   

12.
Oxytetracycline (OTC) is a broad-spectrum antibiotic used in livestock production. The widespread use and relative persistence of OTC may encourage development of antibiotic-resistant bacteria. The objective of this study was to determine whether composting would substantially reduce the concentration of OTC found in manure from medicated animals. The effect of OTC on composting was also investigated. Five beef calves were medicated for 5 days with 22 mg/kg/day of OTC. Approximately 23% of the OTC fed to the calves was recovered in the manure. Manure samples collected from calves prior to and after medication were mixed with straw and woodchips, and aliquots of the subsequent mixtures were treated in laboratory composters for 35 days. In addition, aliquots of the OTC-containing mixture were incubated at 25 degrees C or sterilized followed by incubation at 25 degrees C. The presence of OTC did not appear to affect composting processes. Within the first six days of composting, levels of extractable OTC in the compost mixture decreased from 115+/-8 microg/g dry weight to less than 6+/-1 microg/g dry weight (a 95% reduction). In contrast, levels of extractable OTC in room temperature incubated and sterilized mixtures decreased only 12-25% after 37 and 35 days, respectively. Levels of total heterotrophic bacteria and OTC-resistant bacteria in the finished compost mixture were roughly 30-fold higher and 10-fold lower, respectively, than levels in the mixture prior to composting. Although the basis of the OTC disappearance during composting is not known, the preponderence of OTC-sensitive bacteria and the decrease of OTC-resistant bacteria in the finished compost suggests that OTC residues have been rendered biologically inactive or unavailable.  相似文献   

13.
Cattle manure composts were consecutively manufactured. Compost that reached maturity first was used as a bulking and inoculating agent for subsequent compost production. The microbial community was measured through phospholipid fatty acid analysis. Changes in the content of fatty acid methyl esters derived from phospholipids were similar in all the composts. The diversity index for the fatty acid methyl ester content increased in the secondary-produced compost from the onset of composting. Microbial succession was accelerated using matured compost. The proportion of biomarker fatty acids for gram-positive bacteria also increased in the secondary-produced compost from the early stage of composting. Changes in germination index indicated the maturity stage of the compost. The proportion of biomarker fatty acids for gram-positive bacteria was positively correlated to the germination index, indicating that phospholipid fatty acid analysis is an indicator for evaluating the maturity of cattle manure composts.  相似文献   

14.
Mispah form (FAO: Lithosol) soil contaminated with >380 000 mg kg?1 creosote was co-composted with cattle manure and mixed vegetable waste for 19 months. The soil was mixed with wood chips to improve aeration and then mixed with cattle manure or mixed vegetable waste in a ratio of 4:1. Moisture, temperature, pH, ash content, C:N ratios, and the concentrations of creosote in the compost systems were monitored monthly. The concentrations of selected hydrocarbons in the compost systems were determined at the end of composting. Temperature rose to about 45°C in the cattle manure compost within two months of incubation while temperature in the control and vegetable waste remained below 30°C until the fourth month. Creosote concentration was reduced by 17% in the control and by more than 99% in the cattle manure and vegetable waste compost after composting. The rate of reduction in concentration in the mixed vegetable waste compost was initially lower than in the cattle manure compost. The reduction rate became similar in later months with only small differences towards the end of the composting. The concentrations of selected creosote components were reduced by between 96% and 100% after composting. There was no significant difference in reduction in concentration in both compost systems at p 0.05. Microbial activity correlated with reduction in creosote concentration.  相似文献   

15.
This study has purposed to determine the optimum mixture ratio of used mushroom compost, chicken manure, cattle manure and carnation waste for composting. For this purpose, these materials have been mixed in seven various ratios (R1-R7) and composted in the experimental composting reactors. The highest dry material losses and temperature values have been obtained by the R4 which contains 50% carnation waste, 25% chicken manure and 25% spent mushroom compost. Beside R4, mixtures of R2, R5 and R6 have also provided high process temperature and dry material loss values. The lowest dry material loss and temperature values have been obtained in the R7 which contains only carnation wastes. In the study, it has also seen that FAS (free air space) parameter is effective on the process and must be in the interval of 24-32%.  相似文献   

16.
A 7-year study located in Prince Edward Island, Canada, examined the influence of compost and manure on crop yield and nematode populations. The compost used in this study consisted of cull waste potatoes, sawdust, and beef manure in a 3:3:1 ratio, respectively. No plant-parasitic nematodes were detected in samples collected from windrow compost piles at 5- and 30-cm depths prior to application on field plots. Low population densities of bacterial-feeding nematodes were recovered from compost windrows at the 5-cm depth. Field plots of potato (Solanum tuberosum cv. Kennebec) received compost applied at 16 metric tonnes per hectare, or beef manure applied at 12 metric tonnes per hectare. An adjacent trial with barley (Hordeum vulgare cv. Mic Mac) received only the compost treatment. In both trials the experimental design was a complete randomized block with four replicates. Data averaged over seven growing seasons indicated that population levels of root-lesion nematodes (primarily Pratylenchus penetrans) were higher in root-zone soil in potato plots treated with either compost or manure compared to the untreated control plots. The soil amendments did not affect root-knot nematode (Meloidogyne hapla) population densities in the potato plots, but clover-cyst nematodes (Heterodera trifolii) were more numerous in the root-zone soils of barley treated with compost compared to the untreated plots. Numbers of bacterial-feeding nematodes (primarily Diplogaster lheritieri) were greater in soil in potato plots treated with manure and in soil around barley roots than in untreated plots. Total yields of potato tubers averaged over seven growing seasons increased by 27% in the plots treated with either compost or manure. Grain yields of barley also were increased by 12% when compost was applied. These results indicated that organic amendments increased crop yields, but the impacts on different nematode species varied and usually increased soil population levels.  相似文献   

17.
Olive pomace was composted by using a reactor for a period of 50 days in four bioreactors. Urea was added to adjust C/N ration between 25–30. At the end of 50 days of composting using Trichoderma harzianum and Phanerochaete chrysosporium, cellulose and lignin were highly degraded. It was found that after 30 days, P. chrysosporium and T. harzianum degraded approximately 71.9% of the lignin and 59.25% of the cellulose, respectively. The percent of ash content in the raw waste mixture was 13%. This percentage increased from 13% to 18.55% in treatment bioreactors and from 13% to 13.55% in control reactors during 50 day of composting process. The amount of CO2 produced by the treated sample was 3 mg of CO2/g organic carbon which is indicated that the treated sample was considered as stable compost. The results proved that the use of accelerating agents was found to be efficient in producing mature stable with nearly non-phytotoxicity compared to control sample in less than 50 days.  相似文献   

18.
Pandey AK  Gaind S  Ali A  Nain L 《Biodegradation》2009,20(3):293-306
A composting experiment was conducted to evaluate the effect of a hyperlignocellulolytic fungal consortium and different nitrogen amendments on paddy straw composting in terms of changes in physicochemical and biological parameters. A fungal consortium comprising four lignocellulolytic mesophilic fungal cultures was used as inoculum for bioaugmentation of paddy straw in perforated pits. The comparative effect of farmyard manure (FYM), soybean trash, poultry litter and urea on the composting process was evaluated at monthly intervals in terms of physicochemical (pH, EC, available P, C:N ratio and humus content) and biological (enzymatic and microbial activity) parameters. The compost prepared from bioaugmented paddy straw composting mixture, with poultry manure as nitrogen supplement attained desirable C:N ratio in 1 month and displayed least phytotoxicity levels along with higher production of β-1,4-Exoglucanase. The combined activity of the autochthonous composting microbiota as well as the externally applied fungal inoculum accelerated the composting process of paddy straw. Supplementation of paddy straw with poultry manure in 8:1 ratio was identified as the best treatment to hasten the composting process. This study highlights the importance of application of fungal inoculum and an appropriate N-amendment such as poultry manure for preparation of compost using a substrate having high C:N ratio, such as paddy straw.  相似文献   

19.
Gu W  Zhang F  Xu P  Tang S  Xie K  Huang X  Huang Q 《Bioresource technology》2011,102(11):6529-6535
A simulated aerobic composting experiment was used to explore the effects of sulphur and Thiobacillusthioparus during six manure composting treatments. The addition of sulphur led to a decrease of the pH level within the range 6-6.3, which was lower than the control treatment (CK). The concentration of ammonium nitrogen in T1 (0.25% sulphur), T2 (0.5% sulphur), T3 (0.25% sulphur + T. thioparus) and T4 (0.5% sulphur + T. thioparus) were much higher than the ammonium N in CK. The results indicated that addition of sulphur could increase the concentration of ammonium N and reduce loss of nitrogen. However, excess sulphur had a negative effect on temperature and GI. Addition of T. thioparus could increase concentration of available S, alleviate these negative influences and reduce compost biological toxicity.  相似文献   

20.
Investigations were carried out to find out the relationship between temperature and microbial activity in dairy cattle manure composting using oxygen uptake rate, specific growth rate and enzymatic activities during autothermal and isothermal composting experiments. In autothermal composting, oxygen uptake rate and specific growth rate were found to be most intensive in order of 43 degrees C, 60 degrees C and 54 degrees C. Isothermal composting at 54 degrees C resulted highest levels of enzymatic activity and promoted the volatile solids reduction. Based on the maximum enzymatic activity, specific growth rate appeared to be more closely linked with microbial activity in compost than with oxygen uptake rate. The enhancement of specific growth rate, enzymatic activity and volatile solids reduction were induced at 54 degrees C in cattle manure composting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号