首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of raw materials and their proportions in initial mixtures on organic matter (OM) stabilization and nitrogen (N) availability during pit composting in Sub-Saharan Africa was assessed using biochemical fractionation and laboratory incubations to characterize composts sampled throughout the composting process. Stabilization of OM occurred more rapidly in mixtures with slaughter-house wastes, it was progressive in mixture with household refuses while tree leaves compost remained unstable. Carbon mineralization from compost samples was positively correlated to water soluble and hemicellulose-like organic fractions. Mixtures containing large proportions of household refuses reached the highest stability and total N but available N remained weak. Slaughter-house wastes in the initial mixtures made possible to reach good OM stabilization and the largest N availability. The nature of initial mixing influenced composting parameters, OM stabilization and N availability. It is suggested mixing household refuses and slaughter-house wastes with tree leaves to reach better amending and fertilizer qualities of composts.  相似文献   

2.
Raj D  Antil RS 《Bioresource technology》2011,102(3):2868-2873
The objective of this study was to evaluate changes in physical, chemical and biological parameters to assess the maturity and stability of composts prepared from mixture of different farm and agro-industrial wastes over a period of 150 days. All the composts appeared granular, dark grey in color without foul odor and attained an ambient temperature at 120 days of composting indicating the stable nature of composts. Correlation analysis showed that the optimal values of the selected parameters for our experimental conditions are as follows: organic matter loss >42%, C:N ratio <15, water soluble organic carbon (C(w)):organic N (N(org)) ratio <0.55, humic acid (HA):fulvic acid (FA) ratio >1.9, humification index (HI) >30%, cation exchange capacity (CEC):total organic carbon (TOC) ratio >1.7 and germination index (GI) >70%. Compost enriched with sewage sludge, pressmud and poultry waste matured earlier compared to composts either enriched with distillery effluent or un-enriched.  相似文献   

3.
Biological testing of a digested sewage sludge and derived composts   总被引:5,自引:0,他引:5  
Aiming to evaluate a possible loss of soil habitat function after amendment with organic wastes, a digested sewage sludge and derived composts produced with green residues, where biologically tested in the laboratory using soil animals (Eisenia andrei and Folsomia candida) and plants (Brassica rapa and Avena sativa). Each waste was tested mimicking a field application of 6ton/ha or 12ton/ha. Avoidance tests did not reveal any impact of sludge and composts to soil biota. Germination and growth tests showed that application of composts were beneficial for both plants. Composts did not affect earthworm's mass increase or reproduction, but the highest sludge amendment revealed negative effects on both parameters. Only the amendment of composts at the highest dose originated an impairment of springtails reproductive output. We suggest that bioassays using different test species may be an additional tool to evaluate effects of amendment of organic wastes in soil. Biological tests are sensitive to pollutants at low concentrations and to interactions undetected by routine chemical analysis.  相似文献   

4.
The biological oxidation of elemental sulphur (S(o)) added to three alkaline composts prepared with a range of organic wastes (CC, melon crop residues; MC, mixed manures; and BC, pine bark) to reduce their pH was studied. The titration curves showed that to achieve an equivalent pH drop, compost CC needed a larger dose of S(o) than did composts MC and BC. The acidification efficiency was high in the three composts (53%), but the pH reduction obtained from the titration curves in MC and BC composts was lower than expected. S(o) oxidation in amended composts was found to be related to pH and CaCO(3) content decreases, and to the rise in CaSO(4) and electrical conductivity levels. A remarkable increase in the autotrophic bacteria population and a slight increase in heterotrophic bacteria along with S(o) oxidation were recorded. Actinomycetes, fungi and yeasts were not affected by the addition of S(o) to composts.  相似文献   

5.
The co-composting of exhausted olive-cake with poultry manure and sesame shells was investigated. These organic solid wastes were watered by the confectionary wastewater which is characterized by its high content of residual sugars raising its COD. Four aerated windrows were performed to establish the effects of confectionary by-products on the compost process. Different mixtures of the agro-industrial wastes were used. During the composting process, physico-chemical parameters (temperature, moisture, pH, electrical conductivity, total carbon and total nitrogen) were studied. The stability of the biological system was noticed after 70 days. The final products were characterized by their relatively high organic matter content, and low C/N ratio of 14-17. The humidification of the windrows with the wastewater seemed to have accelerated the composting process in comparison to a windrow humidified with water. In addition, the organic matter degradation was enhanced to reach 55-70%. The application of the obtained composts to soil appeared to significantly improve the soil fertility. Indeed, field experiments showed an increase in potato yield; the production was 30.5-37.5 tons ha(-1), compared to 30.5 tons ha(-1) with farm manure.  相似文献   

6.
Sewage sludge derived from municipal sewage treatment plants is an important source of macronutrients, micronutrients and organic matter. For this reason composting of sewage sludge, along with combustion and co-combustion, is a new management priority in Poland. In this study six composts of different origin and composition were evaluated in terms of their abundance in phosphorus, because it is an essential nutrient for all living organisms. Analyses were conducted on the samples at the initial and at the maturation phase of composting. The bioavailability of phosphorus was estimated on the basis of amounts of the nutrient in isolated fractions using the sequential extraction method. First of all quantitative changes of the total nutrient content and its amounts in separated fractions were dependent on the mixture composition. Irrespective of compost type, 34.5–75.0% of the total amounts of phosphorus were found in hardly available combinations (Fr. III), while available phosphorus forms (Fr. I) accounted for only 6.6–21.6%. As a result of composting together different organic wastes an increase was observed both in the total content and the amounts of this nutrient in separated fractions. This phenomenon was observed particularly in composts with smaller levels of sewage sludge (30–40%), characterised by rapid organic matter decomposition, which was indicated by higher bioavailable amounts of phosphorus. Under such conditions the content of P ranged between 3.68 and 7.4 g kg?1. In comparison to the labile pool of P obtained for matured composts C5 and C6 (65 and 75% of sewage sludge in their composition) amounting to 2.45–3.0 g kg?1 the above values were considerable. Bioavailable phosphorus contents potentially introduced to soil with composts doses calculated at 170 kg total N/ha/yr ranged from 69.8 to 80.2 kg for compost with the lowest share of sewage sludge and from 11.2 to 20.7 kg for compost with the highest share of sewage sludge.  相似文献   

7.
AIMS: The biopesticide effect of four green composts against fusarium wilt in melon plants and the effect of soil quality in soils amended with composts were assayed. METHODS AND RESULTS: The composts consisted of pruning wastes, with or without addition of coffee wastes (3/1 and 4/1, dry wt/dry wt) or urea (1000/1, dry wt/dry wt). In vitro experiments suggested the biopesticide effect of the composts against Fusarium oxysporum, while only the compost of pine bark and urea (1000/1dry wt/dry wt) had an abiotic effect. Melon plant growth with composts and F. oxysporum was one to four times greater than in the non-amended soil, although there was no significant decrease in the level of the F. oxysporum in the soil. The addition of composts to the soil also improved its biological quality, as assessed by microbiological and biochemical parameters: ATP and hydrolases involved in the P (phosphatase), C (beta-glucosidase) and N (urease) cycles. CONCLUSIONS: Green composts had greater beneficial characteristics, improved plant growth and controlled fusarium wilt in melon plants. These composts improve the soil quality of semi-arid agricultural soils. SIGNIFICANCE AND IMPACT OF THE STUDY: Biotic and abiotic factors from composts have been tested as responsible of their biopesticide activity against fusarium wilt.  相似文献   

8.
The slurry bioreactor system is an effective means for treating highly saline food wastes, which may not be recycled as composts. The effect of aeration rate was investigated in a slurry bioreactor as a major factor affecting the slurry-phase decomposition of food wastes. The aeration rate affected significantly the decomposition performance and the composition profiles of the liquid and solid phases. The decomposed carbon was almost linear with oxygen consumption, indicating that the slurry-phase decomposition of food wastes was limited by oxygen transfer. The oxygen requirement for decomposing 1 g organic carbon in food wastes was estimated to be 61.5 g O2. Journal of Industrial Microbiology & Biotechnology (2001) 27, 67–71. Received 20 September 2000/ Accepted in revised form 29 April 2001  相似文献   

9.
High numbers (10(7) to 10(10) cells per g [dry weight]) of heterotrophic, gram-negative, rod-shaped, non-sporeforming, aerobic, thermophilic bacteria related to the genus Thermus were isolated from thermogenic composts at temperatures between 65 and 82 degrees C. These bacteria were present in different types of wastes (garden and kitchen wastes and sewage sludge) and in all the industrial composting systems studied (open-air windows, boxes with automated turning and aeration, and closed bioreactors with aeration). Isolates grew fast on a rich complex medium at temperatures between 40 and 80 degrees C, with optimum growth between 65 and 75 degrees C. Nutritional characteristics, total protein profiles, DNA-DNA hybridization (except strain JT4), and restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs (16S rDNAs) showed that Thermus strains isolated from hot composts were closely related to Thermus thermophilus HB8. These newly isolated T. thermophilus strains have probably adapted to the conditions in the hot-compost ecosystem. Heterotrophic, ovalspore-forming, thermophilic bacilli were also isolated from hot composts, but none of the isolates was able to grow at temperatures above 70 degrees C. This is the first report of hot composts as habitats for a high number of thermophilic bacteria related to the genus Thermus. Our study suggests that Thermus strains play an important role in organic-matter degradation during the thermogenic phase (65 to 80 degrees C) of the composting process.  相似文献   

10.
In this work, the effect of incorporating an acidic ferrous sulphate waste (SF) over co-composting process of sewage sludge and olive mill solid wastes in a 1:2 v/v wet basis was investigated. The SF used was an industrial by-product of titanium oxide synthesis and its addition resulted in a chemical stabilisation of the wastes at low pH. The optimum dose of SF to enhance the composting of the studied biowastes was a 20% v/v (wet basis) and the best moment for the addition turned out to be whenever the composting piles had achieved the thermophilic range. The addition of SF over the composting process made possible a faster stabilisation, increasing the composting rate from 0.033 to 0.13 d(-1), and leading to a Fe and S rich compost. All composts obtained fulfilled the limits determined by current European and Spanish regulations and presented better characteristics for its use as soil amendment and organic fertilizer than the traditional composts without SF. The optimum dose of compost containing SF was determined through agronomic tests being its value about 18 Ton ha(-1).  相似文献   

11.
Wen  Guang  Bates  T. E.  Inanaga  S.  Voroney  R. P.  Hamamura  K.  Curtin  D. 《Plant and Soil》2002,246(2):241-248
Organic wastes such as sewage sludges contain copper (Cu). Increased attention to environmental protection requires that wastes be treated with pathogen-eliminating procedures before application to farmland. It is not clear, however, if such procedures affect the plant availability of Cu in the wastes. This 2-year field research investigated the effect of irradiation and composting on Cu availability in sludges and manure using a yield control approach. Four organic wastes [digested and dewatered (DSS), digested and irradiated (DISS), composted (DICSS) sewage sludges and composted livestock manure (CLM)] were applied at four rates (10, 20, 30 and 40 t solid ha–1 year–1) with supplemented N and K fertilizers. A control treatment (CT) received N and K fertilizers only. Beans, lettuce and petunias were grown in first year and lettuce were harvested twice in second year. Beans appeared to have a strong ability to absorb Cu compared with the other test crops. In general, crop Cu concentration responses to Cu applied in DSS and DISS were well described by quadratic equations. Tested by a paired t-test, Cu concentration in bean pods was higher in DISS than in DSS treatment, indicating that irradiation increased phytoavailability of Cu. However, the parabolic response of crop Cu to Cu applied in DISS, suggesting that the increases were confined to the lower rates of DISS. Copper applied in DICSS did not increase Cu concentration in any of the test crops. At a given level of applied Cu, crop Cu tended to be lower in DICSS than in DSS or DISS treatment. Sludge composting depressed phytoavailability of Cu. Copper concentration in CLM was much lower than in sludges and sludge composts, but application of CLM increased Cu concentration in bean pods. The pattens of Cu concentration in the two cuts of lettuce in 1991 to Cu applied in CLM were similar, where low rates of CLM application slightly reduced Cu concentration, then the Cu concentration increased with increased rates. The dynamics of available Cu supply were different in the sludge composts and manure composts.  相似文献   

12.
Supplementing the nutrient requirement of crops through organic manures as compost derived from agroindustrial wastes plays a key role in sustaining soil fertility, and crop productivity and reducing use of chemical fertilizers. Therefore, this work was conducted for investigating the effects of addition of oily cumin compost (CC) and oily oregano compost (OC) (these composts were derived from oily cumin and oily oregano wastes of aromatic plant factory) at rates of 40 t ha?1 to identify those potential organic amendments that might improve the quality of an Entisol. Additionally, those effects on the biochemical properties of a Typic xerofluvent soil were compared to chemical fertilization (CF) and also control (CT) during a cotton vegetation period under a Mediterranean climatic condition. Soil biological status was evaluated by measuring the soil microbial biomass carbon (MBC), basal soil respiration (BSR), N-mineralization (Nmin), soil metabolic quotient (qCO2) and soil enzymatic activities (dehydrogenase-DHG, urease-UA, protease-PRO, and alkaline phosphate-ALKPA) in soil samples that were collected on the 19th, 78th and 190th days followed by compost application to the experimental soils. The MBC, BSR and qCO2, as well as soil enzyme activities, increased significantly in the compost-treated soils compared with the CF-treated soil and nontreated soils (CT) with respect mean values. The level of microbial activity of soil applied chemical fertilizer was almost the same to those of control soil. As a result of cumin compost (CC) application 137-1810% increase of the level of microbial activity with respect to the CT and CF, followed by OC, 47-314% occurred at the end of the experiment. Because of this there were no toxic effects caused by composts observed. The application of these composts to the soil resulted in the most increase in DHG activity significantly. The application of CC with a C/N ratio of 23 resulted a more favorable soil biological properties than the application of OC (C/N ratio = 32) during cotton vegetation period (190 days). Results from this study suggest that composted aromatic plant wastes can be used to enhance the soil microbial activity, thereby promoting plant growth.  相似文献   

13.
Enzymatic activity, i.e. respiratory activity, dehydrogenase activity, phosphatase activity, caseinian protease activity, BAA protease activity and urease activity, was determined to investigate the process of biochemical transformations and to select enzymatic indices of maturity of composts prepared from feathers and lignocellulose wastes (bark, straw). Composting was conducted for 7 months, with periodic determinations of activity of the enzymes. The study revealed significant differences in the enzymatic activity, related with the duration of composting and with the substrate composition of the composts. Generally, composts enriched with straw were characterised by higher enzymatic activity than composts without any addition of straw. It was found that the activity of such enzymes as cellulase and protease, towards the end of the period of composting decreased and stabilised. The enzymes enumerated can be taken into consideration in estimation of the maturity of composts prepared from feathers and lignocellulose wastes.  相似文献   

14.
Composting of horse manure was used as a means of degradation of two oil wastes, oil sludge from petrol stations and petroleum residues from a refinery. Paraffin oil was chosen as a reference. Oil wastes decomposed to 78–93% during 4.5 months of composting. The degradation of the waste oils was higher than that of the reference paraffin oil and no difference was found between the two types of oil wastes concerning their decomposition. At the end of the experiment, most of the polyaromatic hydrocarbons had been degraded except pyrene, chrysene and dibenz(ah)anthracene. Gaseous losses of oil compounds through volatilisation from composts were found not to be significant.  相似文献   

15.
Microbiological and biotechnological characteristics of intensification of aerobic processing of organic waste have been reviewed, with a view for revealing two types of correlations: (1) between the quality of the composts obtained and the microorganisms involved in composting and (2) between physicochemical parameters and consumer properties of the composts.  相似文献   

16.
By using denaturing gradient gel electrophoresis (DGGE) and simultaneously measuring the enzymatic activity of chitinase, we could link genetic diversity of the indigenous microbial communities with chitinase activity in compost samples. A garden/park waste compost and a source separated organic household waste compost, showed different genetic diversity as measured by PCR-DGGE of total DNA extracted from the composts. The household waste compost had the highest chitinase activity. To increase chitinase activity, the two composts were amended with chitin. This addition induced a change in both the bacterial and fungal genetic diversity when compared to the non-amended compost samples. Likewise, both composts reacted to the addition of chitin with an increase in chitinase activity. Thus, a relationship between genetic diversity and chitinase activity was established for the composts in question. The N-mineralization in the household waste compost was apparently increased by the addition of chitin, while such an effect was not observed in the garden/park waste compost.  相似文献   

17.
Microbiological and biotechnological characteristics of intensification of aerobic processing of organic waste have been reviewed, with a view for revealing two types of correlations: (1) between the quality of the composts obtained and the microorganisms involved in composting and (2) between physicochemical parameters and consumer properties of the composts.  相似文献   

18.
Compost has been proposed as a means of simultaneously diverting organic materials from landfills while producing a valuable product that improves tilth, organic matter content and nutrient supply of agricultural soils. Composts manufactured from different source materials may have markedly different properties however, even if they meet all regulatory requirements. We compared the capacity of composts made from three different combinations of organic wastes (horse manure and bedding, mink farm wastes, municipal solid waste (MSW) and sewage sludge) along with clarifier solids from a chemo-thermomechanical pulp mill, to enhance the growth of tomato (Lycopersicon esculentum L.) seedlings grown in nutrient-poor organic potting soil. Germination and seedling emergence of tomatoes, cress (Lapidium sativum L.) or radish (Raphanus sativus L.) were tested to assess phytotoxicity of the four amendments. Mink farm compost and horse manure compost stimulated root and shoot growth of tomato seedlings but MSW compost and pulp mill solids were strongly inhibitory. MSW compost and unamended potting soil also inhibited seedling emergence and pulp mill solids produced stunting and deformities in radish and cress seedlings. Both toxic constituents and nutrient imbalances may be responsible for the growth-inhibiting effects of these amendments. Application of pulp mill solids to agricultural soil without composting may lead to deleterious effects on vegetable crops.  相似文献   

19.
Use of composts for habitat restoration offers advantages in terms of efficient use of resources. Chemical amendment of compost to reduce its pH and P availability was investigated in order to improve suitability for use in reclamation of blocky quarry waste to acidic grassy heathland. The effect of these amendments was observed on competition between two grass species: Agrostis capillaris and Festuca ovina. A factorial, pot‐scale greenhouse experiment was set up using two composts (one a mixture of green waste and catering waste, and the other a mixture of green waste and sewage sludge). In addition, two soils were collected from upland acidic grassland to provide a natural comparison. S0 was applied to reduce soil pH, and Fe(OH)3 from a coal waste treatment plant was applied to counteract the expected increase in P availability due to acidification of the composts by S0. Addition of S0 significantly reduced soil solution pH and addition of Fe(OH)3 significantly reduced soil solution P concentration. In one compost S0 reduced the biomass of F. ovina while increasing that of A. capillaris, whereas Fe(OH)3 had no significant effect on the biomass of either species. Although S0 and Fe(OH)3 did adjust the chemical properties of the soil solution, Fe(OH)3 did not bind P strongly enough to make it unavailable to plants. Further work is required, however, the use of chemically amended composts provides a sustainable sink for organic wastes and we conclude from this study that they have great potential for large‐scale restoration of blocky waste tips.  相似文献   

20.
Vast amounts of olive mill wastewaters (OMW) are produced in Mediterranean countries, where their treatment and disposal are becoming a serious environmental problem. Increasing attention has been paid to discovering a use for OMW and a wide range of technological treatments are available nowadays for reducing their pollutant effects and for their transformation into valuable products, the most suitable procedures being found to involve recycling rather than the detoxication of these wastes. Direct application of OMW to soil has been considered as an inexpensive method of disposal and recovery of their mineral and organic components but, because of their organic acid and phenol contents, OMW are also a source of pollution. By using composting technologies, it is possible to transform either fresh OMW or sludge from pond-stored OMW mixed with appropriate plant waste waterials (carriers) into organic fertilizers (composts) with no phytotoxicity to improve soil fertility and plant production, the process involving the microbial degradation of the polluting load of the wastes. Results of field and pot experiments using OMW-composts to cultivate horticultural and other crops have shown that yields obtained with organic fertilization are similar, and sometimes higher, to those obtained with a balanced mineral fertilizer. A comparison between the macro and micronutrient contents of plants cultivated with organic or mineral fertilizers did not generally reveal important differences. However, the cases of iron and manganese are worth mentioning as their bio-availability may be linked to the soil humic complexes originated by the OMW organic fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号