首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, two Membrane Biological Reactors (MBR) with submerged flat membranes, one at lab-scale conditions and the other at pilot-plant conditions, were operated at environmental temperature to treat an industrial wastewater characterised by low phenol concentrations (8-16 mg L−1) and high salinity (∼150-160 mS cm−1). During the operation of both reactors, the phenol loading rate was progressively increased and less than 1 mg phenol L−1 was detected even at very low HRTs (0.5-0.7 days). Membrane fouling was minimized by the cross flow aeration rate inside the MBRs and by intermittent permeation. Microbial community analysis of both reactors revealed that members of the genera Halomonas and Marinobacter (gammaproteobacteria) were major components. Growth-linked phenol degradation by pure cultures of Marinobacter isolates demonstrated that this bacterium played a major role in the removal of phenol from the bioreactors.  相似文献   

2.
He SY  Lin YH  Hou KY  Hwang SC 《Bioresource technology》2011,102(10):5609-5616
Airlift bioreactor containing polyvinyl-alcohol-immobilized cell beads was investigated for its capability of biodegradation of dimethyl sulfoxide (DMSO) in term of sludge characteristics including the strategy of acclimation with sucrose and the protection of microorganism from poisoning of DMSO by PVA cell beads. Media condition with sucrose at 50 mg L−1 was beneficial to the biodegradation of DMSO in the fresh PVA entrapped-sludge, but became insignificant in the acclimated one as for tolerance of DMSO toxicity. The removal efficiency of DMSO had the highest rate at 1.42-kg DMSO per kilogram of suspended solid per day after series acclimation batches in the oxygen-enriched airlift bioreactor treated with the 1187.4 mg L−1 of DMSO. Microbial consortium was required for the complete biodegradation of DMSO without any dimethyl sulfide produced. Pseudomonas sp. W1, excreting extracellular monooxygenase identified by indole, was isolated to be one of the most effective DMSO-degrading microorganism in our airlift bioreactor.  相似文献   

3.
The aim of this paper was to determine the effect of two different membrane bioreactor (MBR) configurations (external/immersed) on sludge structure and microbial activity. Sludge structure was deduced from rheological measurements. The high shear stress induced by the recirculation pump in the external MBR was shown to result in decreasing viscosity due to activated sludge (AS) deflocculation. Besides, soluble microbial products (SMP) release was higher in the external MBR (5 mgCOD gMLVSS−1) than in the immersed configuration (2 mgCOD gMLVSS−1). Microbial activity was followed from respirometry tests by focusing on the distinction between heterotrophs and autotrophs. An easier autotrophic microbe development was then observed in the immersed MBR compared to the external one. However, the external MBR was shown to allow better heterotrophic microbe development.  相似文献   

4.
Ethyl acetate removal from an air stream was carried out by using a flat composite membrane bioreactor. The composite membrane consisted of a dense polydimethylsiloxane top layer with an average thickness of 0.3 μm supported in a porous polyacrylonitrile layer (50 μm). The membrane bioreactor (MBR) was operated during 3 months, and a maximum elimination capacity of 225 g m−3 h−1 at an empty bed residence time of 60 s was observed. Removal efficiencies higher than 95% were obtained for inlet loads lower than 200 g m−3 h−1 and empty bed residence times as short as 15 s. The estimated yield coefficient, determined from the carbon dioxide production, resulted in 0.82 g dry biomass synthesized per gram of ethyl acetate degraded. No data of ethyl acetate treatment in MBR have been found in the literature, but the results illustrate that membrane bioreactors can potentially be a good option for its treatment.  相似文献   

5.
The main goal of this research was to investigate how different factors influence membrane fouling. The impact of the different concentrations of activated sludge and the amount of extracellular polymer substances (EPS) were monitored. Two pilot plants with submerged membrane modules (hollow fiber and flat sheet) were operated and the raw wastewater was used.Humic substances were identified as the major components of EPS in the activated sludge (more than 34%) in both pilot plants. As the basic constituent in permeate, humic substances were identified as the most dominant components in the effluent (61%) in both pilot plants. Conversely, proteins were mostly analyzed in permeate and supernatant below the detection limit. The total amount of EPS [mg g−1 (VSS)] was similar for concentrations of activated sludge 6, 10 and 14 g L−1. Carbohydrates were identified as the component of EPS which tends most to clog membranes.  相似文献   

6.
Wu SC  Lee CM 《Bioresource technology》2011,102(9):5375-5380
Soluble extracellular polymeric substances (EPSs) cause membrane fouling in membrane bioreactors (MBRs), correlated with MBR sludge characteristics. Effects of F/M ratios on the evolution of soluble EPSs, fouling propensity of supernatants, and sludge metabolic activity were measured in this study in a two-period sequencing batch reactor (SBR). The experimental results show that fouling propensity was directly correlated with soluble-EPS concentration and composition. Sludge that had entirely lost active cells by long-term starvation released 64.4 ± 0.9 mg/L of humic acids, which caused a rapid increase in membrane resistance (40.67 ± 2.24 × 1011 m−1) during fouling tests. During short-term starvation, induced by incubation at a normal to low F/M ratio of 0.05 d−1, sludge can use previously secreted utilization-associated products (UAPs) to maintain endogenous respiration. Therefore, the strategies of accumulating sludge and prolonging sludge retention time in MBRs may create long-term starvation and promote membrane fouling.  相似文献   

7.
The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L−1 respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests.  相似文献   

8.
The performance of a wastewater bench-scale ultrafiltration membrane bioreactor (MBR) treatment plant using pure oxygen to supply the aerobic conditions for 95 days was studied. The results showed the capacity of the MBR systems to remove organic material under a hydraulic retention time of 12 h and a sludge retention time of 39.91 days. Aeration represents its major power input; this is why the alpha-factor of the aeration and kinetic parameters (design parameters) were determined when the mixed liquid suspended solids (MLSS) was increased from 3420 to 12,600 mg/l in order to understand the system. An alpha-factor in the range 0.462-0.022 and the kinetic parameters measured with the respirometric method (KM of 73.954-3.647 mg/l, kd of 0.0142-0.104 day−1, kH of 0.1266-0.655 day−1, and the yield mean coefficient of 0.941) were obtained. Our study suggested significant changes in the behaviour of the biological system when the concentration of MLSS was increased.  相似文献   

9.
Saline adaptation of granules in mesophilic UASB reactors   总被引:1,自引:0,他引:1  
We exposed mesophilic up-flow anaerobic sludge blanket (UASB) reactors to high concentrations of NaCl to elucidate the saline adaptation capacity of their granular sludge. We operated 10 lab-scale UASB reactors at 37 °C and added NaCl to the influent either abruptly or gradually. With abrupt addition, NaCl concentrations were increased from 0 g L−1 to 20, 30, 35, 40, 45, or 50 g L−1. With gradual addition, the NaCl concentrations were gradually increased from 0 to 64 g L−1 or 0 to 40 g L−1. We successfully saline-adapted the granules up to 32 g NaCl L−1, while maintaining high reactor performance, suggesting that 32 g NaCl L−1 is a practical level for system operation. In the UASB reactors gradually exposed to 32 g L−1 NaCl, methane production decreased by only 13%. We also learned that combining abrupt and gradual salinity increases could shorten the adaptation period. Thus we were able to shorten the adaptation period to only 30 days by increasing the salinity abruptly to 20 g L−1, followed by gradual adaptation to 30 g NaCl L−1.  相似文献   

10.
Wang C  Li Y 《Biotechnology letters》2007,29(9):1353-1356
Granular activated carbon (GAC) was incorporated into hollow fiber membrane bioreactors for the biodegradation of 1,000 mg phenol l−1 through immobilization of Pseudomonas putida. The phenol was removed within 25 h in the hybrid bioreactor, comparing with 31 h for a GAC-free bioreactor. Sorption, biodegradation, desorption, and bioregeneration were four steps for the phenol removal during batch operation.  相似文献   

11.
A bioreactor cascade with a submerged biofilm is proposed to treat young landfill leachate of jbel chakir landfill site south west from capital Tunis, Tunisia. The prototype was run under different organic loading charges varying from 0.6 to 16.3 kg TOC m−3 day−1. Without initial pH adjustment total organic carbon (TOC) removal rate varied between 65% and 97%. The total reduction of COD reached 92% at a hydraulic retention time of 36 h. However, the removal of total kjeldahl nitrogen for loading charges of 0.5 kg N m−3 day−1 reached 75%. The adjustment of pH to 7.5 improved nitrogen removal to a rate of 85% for loading charge of 1 kg N m−3 day−1. The main bacterial groups responsible for a simultaneous removal of organic carbon and nitrogen belonged to Bacillus, Actinomyces, Pseudomonas and Burkholderia genera. These selected isolates showed a great capacity of degradation at different leachate concentrations of total organic carbon.  相似文献   

12.
A photo-Fenton-membrane bioreactor (MBR) coupled system is an innovative tool for the treatment of wastewater containing high quantities of contaminants. In this paper, wastewater with 200 mg l?1 of dissolved organic carbon (DOC) of a selected mixture of five commercial pesticides: Vydate®, Metomur®, Couraze®, Ditimur-40®, and Scala® was treated by combining photo-Fenton and MBR. The effect of photo-treated pollutants on MBR operation was investigated by studying the population changes that occurred with time in the activated sludge of the biological system. Pre-treatment with photo-Fenton was carried out (only up to 34% of mineralization of DOC) and, after MBR treatment, 98% of biodegradation efficiency was obtained. During the biological treatment, little changes in the activated sludge population were detected by DGGE analysis, maintaining acceptable biodegradation efficiency, which points out the robustness of the MBR treatment versus changes in feed composition.  相似文献   

13.
The activated sludge membrane bioreactor (MBR) has been shown to have some advantages for the processing and reclamation of domestic wastewater. We hypothesized that certain microorganisms, chosen for their abilities to decompose the chemical components of raw sewage, would, when coupled with the MBR, significantly improve the stability and efficiency of this system. We selected environmental bacterial strains which oxidize ammonia and nitrites and produce protease, amylase, and cellulase for the development and testing of a novel biologically enhanced MBR (eMBR). We compared the eMBR with the activated sludge MBR. With the eMBR, the average values of effluent quality were: chemical oxygen demand (COD), 40 mg/l(average efficiency of removal 90.0%); and NH4 +–N, 0.66 mg/l(average efficiency of removal 99.4%). Effluent qualities met the standard and were stable during the entire 90 days of this study. For the activated sludge MBR, the COD removal rate was 91.7%, and the NH4 +–N removal (94.8%) was less than that of the eMBR. Start-up time for the eMBR was only 24–48 h, much shorter than the 7–8 days required to initiate function of the standard MBR. The biomass concentrations of total heterotrophic bacteria and autotrophic bacteria in the eMBR did not fluctuate significantly during the course of the study. Various kinds of microorganisms will establish an ecological balance in the reactor. Compared with the activated sludge MBR, the eMBR not only produced an excellent and stable quality of effluent but also resulted in a shorter time to start-up and significantly improved the efficiency of NH4 +–N removal.  相似文献   

14.
We evaluated the kinetic culture characteristics of the microalgae Cyanobium sp. grown in vertical tubular photobioreactor in semicontinuous mode. Cultivation was carried out in vertical tubular photobioreactor for 2 L, in 57 d, at 30 °C, 3200 Lux, and 12 h light/dark photoperiod. The maximum specific growth rate was found as 0.127 d−1, when the culture had blend concentration of 1.0 g L−1, renewal rate of 50%, and sodium bicarbonate concentration of 1.0 g L−1. The maximum values of productivity (0.071 g L−1 d−1) and number of cycles (10) were observed in blend concentration of 1.0 g L−1, renewal rate of 30%, and bicarbonate concentration of 1.0 g L−1. The results showed the potential of semicontinuous cultivation of Cyanobium sp. in closed tubular bioreactor, combining factors such as blend concentration, renewal rate, and sodium bicarbonate concentration.  相似文献   

15.
This study was conducted to identify the factors affecting the performance of membrane bioreactor (MBR) for piggery wastewater treatment. The change of organic and nitrogen concentrations in piggery wastewater was studied to investigate the treatment efficiency. The increase of COD, BOD and NH3–N from 1150 to 2050 mg/L, 683 to 1198 mg/L and 154 to 248 mg/L has led to the decrease of treatment efficiency. Removal efficiencies of COD, BOD and NH3–N have decreased from 96.0% to 92.0%, 97.0% to 92.7% and 93.2% to 69.5%, respectively. The effects of biomass characteristics on membrane fouling were determined based on Pearson’s correlation coefficient (rp). It was found that MLSS had a negative correlation with permeate flux (rp = −0.745, at significant level of 0.05) while sludge floc size a positive correlation (rp = 0.731, at significant level of 0.05). MLSS and sludge floc size were found to be the dominant factors that controlled the membrane filterability while sludge viscosity, EPS, SMP and SV30 have taken as the sub-factors affecting membrane fouling.  相似文献   

16.
The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.0 mm at a chemical oxygen demand (COD) loading rate of 2.5 kg COD m−3 d−1. The biomass concentration was 7600 mg L−1 while the sludge volume index (SVI) was 31.3 mL g SS−1 indicating good biomass accumulation in the reactor and good settling properties of granular sludge, respectively. COD and ammonia removals were achieved at a maximum of 91.1% and 97.6%, respectively while color removal averaged at only 38%. This study provides insights on the development and the capabilities of aerobic granular sludge in POME treatment.  相似文献   

17.
Chen S  Hu Q  Hu M  Luo J  Weng Q  Lai K 《Bioresource technology》2011,102(17):8110-8116
Fungal strain HU, isolated from activated sludge and identified as a member of the genus Cladosporium based on morphology and sequencing of 28S rRNA, was shown to degrade 90% of fenvalerate, fenpropathrin, β-cypermethrin, deltamethrin, bifenthrin, and permethrin (100 mg L−1) within 5 days. Fenvalerate was utilized as sole carbon and energy source and co-metabolized in the presence of sucrose. Degradation of fenvalerate occurred at pH 5-10 at 18-38 °C. The fungus first hydrolyzed the carboxylester linkage to produce α-hydroxy-3-phenoxy-benzeneacetonitrile and 3-phenoxybenzaldehyde, and subsequently degraded these two compounds with a qmax, Ks and Ki of 1.73 d−1, 99.20 mg L−1 and 449.75 mg L−1, respectively. Degradation followed first-order kinetics. These results show that the fungal strain may possess potential to be used in bioremediation of pyrethroid-contaminated environments.  相似文献   

18.
This study investigated the feasibility and the treatment efficiency of a cyclic anoxic/aerobic two-stage MBR for treating polymeric industrial wastewater. The anoxic/aerobic hybrid MBR was operated without sludge withdrawal except sampling during the study. The results showed that the highest COD organic loading rate of 8.7 kg COD/m3 day from bioreactor was obtained at phase 3. The system achieved 97% BOD5 and 89% COD removal. It also revealed that 93% of COD removal was contributed by bioreactor at phase 3 and the similar results happened to phases 1 and 2. The highest TN and TKN removals for each phase were 60, 74, 80% and 61, 74, 81%, respectively and limited by nitritation step. SEM images of nascent and fouled membranes were offered to evaluate the cleaning method. The system was operated for 174 days, resulting in high degradation rate, flexibility towards influent fluctuations and limited sludge production.  相似文献   

19.
The objective of this work was to maximize the digestibility of biological sludge to elucidate the feasibility of a new sludge management strategy to recover good quality sludge for agricultural use. The combined effects of organic loading rates (from 0.7 to 2.8 g VS L−1 d−1) and the degree of disintegration by anaerobic digestion of sonicated activated sludge were discussed, and the thermal and energetic balances were evaluated. Despite low sonication inputs, sludge digestion performance improved in terms of solids degradation and biogas production depending on the soluble organic load. The biogas production by sonicated sludge was higher (up to 30%) with respect to the control. Filterability improved during digestion of sonicated sludge at medium OLR due to a significant abatement of the fines. Thermal balances indicated that sonication may be a proper system to guarantee self-sustaining WAS mesophilic digestion. Nevertheless, thickening is a pre-requisite to achieve a positive energy balance.  相似文献   

20.
The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na+ = 0.8 M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80-90% saturation) at 35 °C. Sulfide loading rates up to 27 mmol L−1 day−1 were successfully applied at a HRT of 3.5 days. Sulfide was completely converted into sulfate by the haloalkaliphilic sulfide-oxidizing bacteria belonging to the genus Thioalkalivibrio. Influent benzene concentrations ranged from 100 to 600 μM. At steady state, benzene was removed by 93% due to high stripping efficiencies and biodegradation. Microbial community analysis revealed the presence of haloalkaliphilic heterotrophic bacteria belonging to the genera Marinobacter, Halomonas and Idiomarina which might have been involved in the observed benzene removal. The work shows the potential of halo-alkaliphilic bacteria in mitigating environmental problems caused by alkaline waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号