首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A swim-bed reactor for partial nitritation with polymeric coagulant treatment and an UASB reactor for anammox were applied to the treatment of livestock manure digester liquor. The partial nitritation was maintained for 32 days under a 1.6 kg N/m3/d nitrogen loading rate (NLR) with an average conversion efficiency of 51%, and achieved 1.65 kg N/m3/d of the maximum nitrite production rate under 2.58 kg N/m3/d of NLR. Although 200 mg/L of TOC remained in the effluent of the partial nitritation reactor, the anammox nitrogen removal rate was not significantly decreased and a relatively high rate of 2.0 kg N/m3/d was obtained under a NLR of 2.2 kg N/m3/d. 16S rRNA gene analysis showed that Nitrosomonas and KSU-1 were dominant in the partial nitritation and anammox reactor, respectively. The results of this study demonstrated that the partial nitritation-anammox process has possibility of applying to the nitrogen removal of livestock manure digester liquor.  相似文献   

2.
Ozonation pretreatment was applied to palm oil mill effluent (POME) prior to anaerobic digestion using the anaerobic sequencing batch reactor (ASBR). Ozonation increased BOD/COD by 37.9% with a COD loss of only 3.3%. At organic loads of 6.48-12.96 kg COD/m3/d, feeding with non-ozonated POME caused a system failure. The ozonated POME gave significantly higher TCOD removal at loadings 6.52 and 9.04 kg COD/m3/d but failed to sustain the operation at loading 11.67 kg COD/m3/d. Effects of cycle time (CT) and hydraulic retention time (HRT) were determined using quadratic regression model. The generated response surface and contour plot showed that at this high load conditions (6.52-11.67 kg COD/m3/d), longer HRT and shorter CT gave the ASBR higher organic removal efficiency and methane yield. The model was able to satisfactorily describe the relationship of these two key operating parameters.  相似文献   

3.
In this study, the performance of 5.4 L hybrid upflow anaerobic sludge blanket (HUASB) reactor for treating poultry slaughterhouse wastewater under mesophilic conditions (29-35 °C), was investigated. After starting-up, the reactor was loaded up to an OLR of 19 kg COD/m3 d and achieved varied TCOD and SCOD removal efficiencies of 70-86% and 80-92%, respectively. The biogas was varied between 1.1 and 5.2 m3/m3 d with the maximum methane content of 72%. The maximum methane yield was 0.32 m3/kg CODremoved at an OLR of 9.27 kg COD/m3 d. Black matured granules of size between 2.5 and 5 mm were observed at the end of 225 d operation. RTD study showed the flow behavior was in mixed regime at the end of performance study. Step wise polynomial regression analysis was fitted well. Methanobacterium and Methanosaeta bacteria were dominant at the end of start-up whereas Methanosarcina, Cocci and rods were predominant at the end of performance studies.  相似文献   

4.
Wang W  Ma W  Han H  Li H  Yuan M 《Bioresource technology》2011,102(3):2441-2447
Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 ± 2 °C) reactor as a control, thermophilic anaerobic digestion (55 ± 2 °C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m3 d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.  相似文献   

5.
The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.0 mm at a chemical oxygen demand (COD) loading rate of 2.5 kg COD m−3 d−1. The biomass concentration was 7600 mg L−1 while the sludge volume index (SVI) was 31.3 mL g SS−1 indicating good biomass accumulation in the reactor and good settling properties of granular sludge, respectively. COD and ammonia removals were achieved at a maximum of 91.1% and 97.6%, respectively while color removal averaged at only 38%. This study provides insights on the development and the capabilities of aerobic granular sludge in POME treatment.  相似文献   

6.
The performance of an intermittently aerated sequencing batch reactor (IASBR) technology was investigated in achieving partial nitrification, organic matter removal and nitrogen removal from separated digestate liquid after anaerobic digestion of pig manure. The wastewater had chemical oxygen demand (COD) concentrations of 11,540 ± 860 mg/L, 5-day biochemical oxygen demand (BOD5) concentrations of 2,900 ± 200 mg/L and total nitrogen (TN) concentrations of 4,041 ± 59 mg/L, with low COD:N ratios (2.9) and BOD5:COD ratios (0.25). Synthetic wastewater, simulating the separated digestate liquid with similar COD and nitrogen concentrations but BOD5 of 11,500 ± 100 mg/L, was also treated using the IASBR technology. At a mean organic loading rate of 1.15 kg COD/(m3 d) and a nitrogen loading rate of 0.38 kg N/(m3 d), the COD removal efficiency was 89.8% in the IASBR (IASBR-1) treating digestate liquid and 99% in the IASBR (IASBR-2) treating synthetic wastewater. The IASBR-1 effluent COD was mainly due to inert organic matter and can be further reduced to less than 40 mg/L through coagulation. The partial nitrification efficiency of 71–79% was achieved in the two IASBRs and one cause for the stable long-term partial nitrification was the intermittent aeration strategy. Nitrogen removal efficiencies were 76.5 and 97% in IASBR-1 and IASBR-2, respectively. The high nitrogen removal efficiencies show that the IASBR technology is a promising technology for nitrogen removal from low COD:N ratio wastewaters. The nitrogen balance analysis shows that 59.4 and 74.3% of nitrogen removed was via heterotrophic denitrification in the non-aeration periods in IASBR-1 and IASBR-2, respectively.  相似文献   

7.
Organic and nitrogen removal efficiencies in subsurface horizontal flow wetland system (HSF) with cattail (Typha augustifolia) treating young and partially stabilized solid waste leachate were investigated. Hydraulic loading rate (HLR) in the system was varied at 0.01, 0.028 and 0.056 m3/m2 d which is equivalent to hydraulic retention time (HRT) of 28, 10 and 5 d. Average BOD removals in the system were 98% and 71% when applied to young and partially stabilized leachate at HLR of 0.01 m3/m2 d. In term of total kjeldahl nitrogen, average removal efficiencies were 43% and 46%. High nitrogen in the stabilized leachate adversely affected the treatment performance and vegetation in the system. Nitrogen transforming bacteria were found varied along the treatment pathway. Methane emission rate was found to be highest at the inlet zone during young leachate treatment at 79–712 mg/m2 d whereas CO2 emission ranged from 26–3266 mg/m2 d. The emission of N2O was not detected.  相似文献   

8.
9.
Vegetable based market waste was evaluated as a fermentable substrate for hydrogen (H2) production with simultaneous stabilization by dark-fermentation process using selectively enriched acidogenic mixed consortia under acidophilic microenvironment. Experiments were performed at different substrate/organic loading conditions in concurrence with two types of feed compositions (with and without pulp). Study depicted the feasibility of H2 production from vegetable waste stabilization process. H2 production was found to be dependent on the concentration of the substrate and composition. Higher H2 production and substrate degradation were observed in experiments performed without pulp (23.96 mmol/day (30.0 kg COD/m3); 13.96 mol/kg CODR (4.8 kg COD/m3)) than with pulp (22.46 mmol/day (32.0 kg COD/m3); 12.24 mol/kg CODR (4.4 kg COD/m3)). Generation of higher concentrations of acetic acid and butyric acid was observed in experiments performed without pulp. Data enveloping analysis (DEA) was employed to study the combined process efficiency of system by integrating H2 production and substrate degradation.  相似文献   

10.
The subsurface wastewater infiltration (SWI) system proved to be an effective and low-cost technique for decentralized sewage treatment in areas without adequate domestic treatment facilities. Field-scale experiments were conducted through a deep SWI system, with effective depth of 1.5 m, under hydraulic loading rates of 0.040, 0.065, 0.081 and 0.10 m3/m2 d. Taking the hydraulic and treatment efficiencies into consideration, the hydraulic loading rate of 0.081 m3/m2 d was recommended. Under this condition, NH3-N, TN, and COD removal efficiencies were 86.2 ± 3.0, 80.7 ± 1.9 and 84.8 ± 2.1%, respectively. In the effluent, NH3-N concentration declined to 2.3-4.4 mg/L, accounting for 63.2-65.6% of TN. NO3-N concentration increased from 0.2 to 0.3 mg/L in the influent to 2.0-2.5 mg/L in the effluent. The nitrifying bacteria number declined with increased depth, while the amount of denitrifying bacteria increased. The analysis of results about the nitrifying and denitrifying bacteria distribution indicated that the most effective ranges for nitrification and denitrification process were 0.3-0.7 m and 0.7-1.5 m, respectively.  相似文献   

11.
The vertical distribution of nitrification performances in an up-flow biological aerated filter operated at tertiary nitrification stage is evaluated in this paper. Experimental data were collected from a semi-industrial pilot-plant under various operating conditions. The actual and the maximum nitrification rates were measured at different levels inside the up-flow biofilter. A nitrogen loading rate higher than 1.0 kg NH4-N m−3_media d−1 is necessary to obtain nitrification activity over all the height of the biofilter. The increase in water and air velocities from 6 to 10 m h−1 and 10 to 20 m h−1 has increased the nitrification rate by 80% and 20% respectively. Backwashing decreases the maximum nitrification rate in the media by only 3-14%. The nitrification rate measured at a level of 0.5 m above the bottom of the filter is four times higher than the applied daily average volumetric nitrogen loading rate up to 1.5 kg NH4-N m−3_media d−1. Finally, it is shown that 58% of the available nitrification activity is mobilized in steady-state conditions while up to 100% is used under inflow-rate increase.  相似文献   

12.
The effect of starch addition on the microbial composition and the biological conversion was investigated using two upflow anaerobic sludge bracket (UASB) reactors treating methanolic wastewater: one reactor was operated with starch addition, and another reactor was operated without starch addition. Approximately 300 days of operation were performed at 30 kg COD/m3/d, and then, the organic load of the reactors was gradually increased to 120 kg COD/m3/d. Successful operation was achieved at 30 kg COD/m3/d in both reactors; however, the methanol-fed reactor did not perform well at 120 kg COD/m3/d while the methanol-starch-fed reactor did. The granule analysis revealed the granule developed further only in the methanol-starch-fed reactor. The results of the microbial community analysis revealed more Methanosaeta cells were present in the methanol-starch-fed reactor, suggesting the degradation of starch produced acetate as an intermediate, which stimulated the growth of Methanosaeta cells responsible for the extension of granules.  相似文献   

13.
Investigation on a full-scale UASB treating industrial wastewater at a low organic loading rate (OLR) was conducted. Excellent treatment performance was achieved when treating the evaporator condensate of distillery wastewater at the OLR of less than 1 kg COD/m3 d. Anaerobic effluent could be discharged without further treatment, which saved energy and running cost considerably. GC–MS analysis showed that the soluble microbial products (SMPs) were decreased to a low level at the low OLR. The main SMP in the anaerobic effluent were long chain carbohydrates and esters, accounting for 55–65% of the total organic matters. Anaerobic SMP was more complex than the aerobic ones.  相似文献   

14.
Performance of two dual chambered mediator-less microbial fuel cells (MFCs) was evaluated at different sludge loading rate (SLR) and feed pH. Optimum performance in terms of organic matter removal and power production was obtained at the SLR of 0.75 kg COD kg VSS−1 d−1. Maximum power density of 158 mW/m2 and 600 mW/m2 was obtained in MFC-1 (feed pH 6.0) and MFC-2 (feed pH 8.0), respectively. Internal resistance of the cell decreased with increase in SLR. When operated only with biofilm on anode, the maximum power density was 109.5 mW/m2 in MFC-1 and 459 mW/m2 in MFC-2, which was, respectively, 30% and 23.5% less than the value obtained in MFC-1 and MFC-2 at SLR of 0.75 kg COD kg VSS−1 d−1. Maximum volumetric power of 15.51 W/m3 and 36.72 W/m3 was obtained in MFC-1 and MFC-2, respectively, when permanganate was added as catholyte. Higher feed pH (8.0) favoured higher power production.  相似文献   

15.
The continuous operation of a newly developed methane fermentation reactor, which requires no electricity for the agitation of the fermentation liquid was investigated, and the extent of the biological desulfurization was monitored. Inside the reactor, the continual change in the liquid level and the self-agitation, occurring between 5 and 16 times every day, distributed the organic load near the inlet port of the reactor, as well as providing a nutrient supply to the hydrogen sulfide oxidizing bacteria. At different CODCr loading rates (5, 7, 10 kg m3 d−1), the reactor achieved a biogas production yield of 0.72-0.82 m3 g−1-TS, a CODCr reduction of 79.4-85.5% and an average of 99% hydrogen sulfide removal. This investigation demonstrated that the self-agitated reactor is comparable in digestion performance to the completely stirred tank reactor (CSTR) investigated in a previous study, and that the desulfurization performance was significantly enhanced compared to the CSTR.  相似文献   

16.
Fu Z  Zhang Y  Wang X 《Bioresource technology》2011,102(4):3748-3753
In this study, the performance of the anoxic filter bed and biological wriggle bed-ozone biological aerated filter (AFB-BWB-O3-BAF) process treating real textile dyeing wastewater was investigated. After more than 2 month process operation, the average effluent COD concentration of the AFB, BWB, O3-BAF were 704.8 mg/L, 294.6 mg/L and 128.8 mg/L, with HRT being 8.1-7.7 h, 9.2 h and 5.45 h, respectively. Results showed that the effluent COD concentration of the AFB decreased with new carriers added and the average removal COD efficiency was 20.2%. During operation conditions, HRT of the BWB and O3-BAF was increased, resulting in a decrease in the effluent COD concentration. However, on increasing the HRT, the COD reduction capability expressed by the unit carrier COD removal loading of the BWB reactor increased, while that of the O3-BAF reactor decreased. This study is a beneficial attempt to utilize the AFB-BWB-O3-BAF combine process for textile wastewater treatment.  相似文献   

17.
Ye J  Mu Y  Cheng X  Sun D 《Bioresource technology》2011,102(9):5498-5503
Treatment of a fresh leachate with high-strength organics and calcium from municipal solid waste (MSW) incineration plant by an up-flow anaerobic sludge blanket (UASB) reactor was investigated under mesophilic conditions, emphasizing the influence of organic loading rate (OLR). When the reactor was fed with the raw leachate (COD as high as 70,390-75,480 mg/L) at an OLR of 12.5 kg COD/(m3 d), up to ∼82.4% of COD was removed suggesting the feasibility of UASB process for treating fresh leachates from incineration plants. The ratio of volatile solids/total solids (VS/TS) of the anaerobic sludge in the UASB decreased significantly after a long-term operation due to the precipitation of calcium carbonate in the granules. Scanning electron microscopy (SEM) observation shows that Methanosaeta-like species were in abundance, accompanied by a variety of other species. The result was further confirmed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequencing.  相似文献   

18.
The performance of a 10 L sequencing batch reactor (SBR) treating slaughterhouse wastewater was examined at ambient temperature. The influent wastewater comprised 4672+/-952 mg chemical oxygen demand (COD)/L, 356+/-46 mg total nitrogen (TN)/L and 29+/-10 mg total phosphorus (TP)/L. The duration of a complete cycle was 8 h and comprised four phases: fill (7 min), react (393 min), settle (30 min) and draw/idle (50 min). During the react phase, the reactor was intermittently aerated with an air supply of 0.8L/min four times at 50-min intervals, 50 min each time. At an influent organic loading rate of 1.2g COD/(Ld), average effluent concentrations of COD, TN and TP were 150 mg/L, 15 mg/L and 0.8 mg/L, respectively. This represented COD, TN and TP removals of 96%, 96% and 99%, respectively. Phase studies show that biological phosphorus uptake occurred in the first aeration period and nitrogen removal took place in the following reaction time by means of partial nitrification and denitrification. The nitrogen balance analysis indicates that denitrification and biomass synthesis contributed to 66% and 34% of TN removed, respectively.  相似文献   

19.
Functional role of biomolecules viz., carbohydrates and proteins on acidogenic biohydrogen (H2) production was studied through the treatment of canteen based composite food waste. The performance was evaluated in an anaerobic sequencing batch reactor (AnSBR) at pH 6 with five variable organic loading conditions (OLR1, 0.854; OLR2, 1.69; OLR3, 3.38; OLR4, 6.54 and OLR5, 9.85 kg COD/m3-day). Experimental data depicted the feasibility of H2 production from the stabilization of food waste and was found to depend on the substrate load. Among the five loading conditions studied, OLR4 documented maximum H2 production (69.95 mmol), while higher substrate degradation (3.99 kg COD/m3-day) was observed with OLR5. Specific hydrogen yield (SHY) vary with the removal of different biomolecules and was found to decrease with increase in the OLR. Maximum SHY was observed with hexose removal at OLR1 (139.24 mol/kg HexoseR at 24 h), followed by pentoses (OLR1, 108.26 mol/kg PentoseR at 48 h), proteins (OLR1, 109.71 mol/kg ProteinR at 48 h) and total carbohydrates (OLR1, 58.31 mol/kg CHOR at 24 h). Proteins present in wastewater helped to maintain the buffering capacity but also enhanced the H2 production by supplying readily available organic nitrogen to the consortia. Along with carbohydrates and proteins, total solids also registered good removal.  相似文献   

20.
A bioreactor cascade with a submerged biofilm is proposed to treat young landfill leachate of jbel chakir landfill site south west from capital Tunis, Tunisia. The prototype was run under different organic loading charges varying from 0.6 to 16.3 kg TOC m−3 day−1. Without initial pH adjustment total organic carbon (TOC) removal rate varied between 65% and 97%. The total reduction of COD reached 92% at a hydraulic retention time of 36 h. However, the removal of total kjeldahl nitrogen for loading charges of 0.5 kg N m−3 day−1 reached 75%. The adjustment of pH to 7.5 improved nitrogen removal to a rate of 85% for loading charge of 1 kg N m−3 day−1. The main bacterial groups responsible for a simultaneous removal of organic carbon and nitrogen belonged to Bacillus, Actinomyces, Pseudomonas and Burkholderia genera. These selected isolates showed a great capacity of degradation at different leachate concentrations of total organic carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号