首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The need for preserving the environment is tightening regulations limiting the discharge of contaminants into water bodies. Nowadays most of the effort is done on the removal of more specific contaminants such as nutrients (N and P) and sulfurous compounds since they are becoming of great concern due to its impact on the quality of water bodies. There have been two recent discoveries of microbial conversions of nitrogenous compounds. One consisting on the capability of ammonia oxidizers of denitrify under certain conditions resulting in a new one-step method for the removal of N-compounds. The second has been named the ANAMMOX process, wherein ammonium is oxidized to dinitrogen gas with nitrite as the electron acceptor. Other developments consist of operational strategies aiming at obtaining the highest efficiency at removing nitrogen at lowest cost. One strategy consists of the partial nitrification to nitrite (only successful in the SHARON process) and subsequently either the heterotrophic denitrification of nitrites or its autotrophic reduction by ANAMMOX microorganisms. Another strategy consists of the coexistence of nitrifiers and denitrifiers in the same reactor by implementing high frequency oscillations on the oxygen level.The recent developments on biological phosphorous removal are based on the capacity of some denitrifying microorganisms to store ortho-phosphate intracellular as poly-phosphate in the presence of nitrate. These microorganisms store substrate (PHB) anaerobically which is further oxidized when nitrate is present. By extracting excess sludge from the anoxic phase, phosphate is removed from the system. Removing phosphate using nitrate instead of oxygen has the advantage of saving energy (oxygen input) and using less organic carbon.The microbial conversions of sulfurous compounds involve the metabolism of several different specific groups of bacteria such as sulfate reducing bacteria, sulfur and sulfide oxidizing bacteria, and phototrophic sulfur bacteria. Some of these microorganisms can simultaneously use nitrate, what has been reported as autotrophic denitrification by sulfur and sulfide oxidizing microorganisms. More recently, the anaerobic treatment of an industrial wastewater rich in organic matter, nitrogen and sulfate, reported a singular evolution of N and S compounds that initially was hypothesized as SURAMOX (SUlfate Reduction and AMmonia OXidation). The process could not have been verified nor reproduced and further investigations on the proposed SURAMOX mechanism have given no additional insights to those initial observations.  相似文献   

3.
Peng Y  Ge S 《Bioresource technology》2011,102(11):6405-6413
An anoxic/oxic step feeding process was improved to enhance nutrient removal by reconfiguring the process into (1) anaerobic/anoxic/oxic step feeding process or (2) modified University of Capetown (UCT) step feeding process. Enhanced nitrogen and phosphorus removal and optimized organics utilization were obtained simultaneously in the modified UCT type with both internal and sludge recycle ratios of 75% as well as anaerobic/anoxic/oxic volume ratio of 1:3:6. Specifically, the UCT configuration and optimized operational conditions lead to the enrichment of denitrifying phosphorus removal microorganisms and achieved improved anaerobic P-release and anoxic P-uptake activities, which were beneficial to the denitrifying phosphorus removal activities and removal efficiencies. Due to high mixed liquor suspended solid and uneven distributed dissolved oxygen, 35% of total nitrogen was eliminated through simultaneous nitrification and denitrification process in aerobic zones. Moreover, 62 ± 6% of influent chemical oxygen demands was involved in the denitrification or phosphorus release processes.  相似文献   

4.
Anaerobic/anoxic/aerobic systems inoculated without and with NaCl acclimated cultures, i.e., Models A and B, respectively, were fed with a synthetic wastewater at various salinity levels. After achieving a steady state, the systems were shocked with 70 g/l NaCl for four consecutive days before returning to pre-shock conditions. At the steady-state, the specific oxygen uptake rates (SOURs) increased with an increase of sodium chloride concentration (from 5.40 to 9.72 mg O2/g mixed liquor suspended solids (MLSS)-h at 0–30 g/l NaCl for Model A and from 6.84 to 17.64 mg O2/g MLSS-h at 5–30 g/l NaCl for Model B). In contrast, the specific ammonia uptake rate (SAUR) and specific nitrate uptake rate (SNUR) decreased with increasing chloride concentration (from 4.76 to 2.14 mg NH3–N/g MLSS-h and 2.50 to 1.22 NO3–N/g MLSS-h, for Model A, and from 3.84 to 2.71 mg NH3–N/g MLSS-hr and 2.54 to 1.82 mg NO3–N/g MLSS-hr, for Model B). During the shocked period, the SOUR in most scenarios increased whereas the SAUR and SNUR tended to decrease. The impact of the chloride shock on nitrifiers was more obvious than on denitrifiers; however, after a certain recovery period, the activities of both nitrifiers and denitrifiers in terms of SAUR and SNUR were approximately the same as those prior to shock.  相似文献   

5.
In this study, pilot-scale experiments for the removal of nitrogen from sewage obtained from a county Y sewer system were performed using modified A2O processes. Using this approach, the total amount of nitrogen discharged during denitrification of the influent was average 38.6 mg/L and a level of average 10.8 mg/L was maintained throughout the denitrification process, which resulted in an average removal efficiency that was greater than 72%. The nitrogen components in the effluent water consisted of 22% ammonia nitrogen, 6% nitrite nitrogen and 72% nitrate nitrogen, reaching a nitrification efficiency of 94%. In conclusion, since these advanced treatment methods, which involve modified A2O processes, were successfully employed to remove nitrogen from sewage discharge, they hold promise for wide spread use by treatment plants.  相似文献   

6.
Li Y  Chen YF  Chen P  Min M  Zhou W  Martinez B  Zhu J  Ruan R 《Bioresource technology》2011,102(8):5138-5144
The feasibility of growing Chlorella sp. in the centrate, a highly concentrated municipal wastewater stream generated from activated sludge thickening process, for simultaneous wastewater treatment and energy production was tested. The characteristics of algal growth, biodiesel production, wastewater nutrient removal and the viability of scale-up and the stability of continuous operation were examined. Two culture media, namely autoclaved centrate (AC) and raw centrate (RC) were used for comparison. The results showed that by the end of a 14-day batch culture, algae could remove ammonia, total nitrogen, total phosphorus, and chemical oxygen demand (COD) by 93.9%, 89.1%, 80.9%, and 90.8%, respectively from raw centrate, and the fatty acid methyl ester (FAME) content was 11.04% of dry biomass providing a biodiesel yield of 0.12 g-biodiesel/L-algae culture solution. The system could be successfully scaled up, and continuously operated at 50% daily harvesting rate, providing a net biomass productivity of 0.92 g-algae/(L day).  相似文献   

7.
The effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater was investigated. Experiments were conducted in a modified Ludzack–Ettinger pilot-plant configuration for 365 days. Total nitrification of an influent concentration of 1200 mg NH4+–N l−1 was obtained in this period. Influent COD/N ratios between 0.71 and 3.4 g COD g N−1 were tested by varying the nitrogen loading rate (NLR) supplied to the pilot plant. An exponential decrease of nitrification rate was observed when the influent COD/N ratio increased.

The experimental COD/N ratio for denitrification was 7.1±0.8 g COD g N−1 while the stoichiometric ratio was 4.2 g COD g N−1. This difference is attributable to the oxidation of organic matter in the anoxic reactor with the oxygen of the internal recycle. The influence of influent COD/N ratio on the treatment of high-strength ammonium industrial wastewater can be quantified with these results. The influence of COD/N ratio should be one of the main parameters in the design of biological nitrogen removal processes in industrial wastewater treatment.  相似文献   


8.
Gao Y  Peng Y  Zhang J  Wang S  Guo J  Ye L 《Bioresource technology》2011,102(5):4091-4097
To enhance nutrient removal performance and reduce disposal amount of waste activated sludge (WAS), a pilot-scale continuous system consisting of a 2-step sludge alkaline fermentation process and an A2O reactor was proposed. The feasibility of WAS reducing and resourcing by alkaline fermentation was investigated. Volatile fatty acids (VFA) yield was higher under alkaline condition than that under acidic condition. Through 2-step alkaline fermentation, substantial VFA was accumulated, and then elutriated out continuously from an up-flow column by domestic wastewater. The results showed that 38.2% of sludge was hydrolyzed, 19.7% was finally acidified into VFA, and as high as 42.1% of WAS was reduced. Moreover, after introducing the fermentation liquids with higher proportion of acetic acid and propionic acid into the A2O reactor, the total nitrogen and phosphorus removal efficiencies reached to 80.1% and 90.0%, respectively. Sludge reduction and enhanced nutrient removal could be achieved simultaneously in the proposed system.  相似文献   

9.
Hydraulic characteristics of biological wastewater treatment systems were shown to affect bacterial state distributions and system performance through mathematical simulations. The term "state" is used here to mean the microbial storage product and biomass content of a bacterium. The traditional approach to simulating biological treatment processes assumes "lumped" (average) states, rather than accounting for variable states across bacterial populations. Distributed states were previously suggested as critical to enhanced biological phosphorus removal (EBPR), but the factors that cause distributed states were not evaluated. A primary driver for distributed state development is variable hydraulic experiences of bacteria as they cycle through completely mixed reactors, and so process characteristics that affect hydraulics were hypothesized to affect state distributions. Two design characteristics affecting system hydraulics were evaluated using a new distributed state simulation program (DisSimulator 1.0): total hydraulic residence time (HRT) and numbers of reactors in series. Distributed predictions consistently predicted worse EBPR performance than did the lumped approach. Increasing HRTs (with constant solids retention times) tended to increase state distributions, to increase the differences between lumped and distributed simulation predictions, and to decrease predicted EBPR performance. As the numbers of reactors in series increased, distributed predictions tended to converge with lumped simulation predictions. Distributed simulations tended to predict a greater benefit to using reactors in series than did lumped simulations. This work provides guidance for new strategies to improve EBPR by minimizing state distributions. The targeted hydraulic characteristics may be more important to EBPR than previously recognized due to their effects on distributed states.  相似文献   

10.
Pollution from concentrated animal feeding operations (CAFOs) are the most serious pollution source in China now, and swine wastewater contains high concentrations of nutrients such as chemical oxygen demand (COD), biochemical oxygen demand 5 (BOD5), ammonium, and emergent contaminants related to public health. Biological processes are the most popular treatment methods for COD and ammonium removal. Considering the low operation cost, easy maintenance and high removal rate of contaminants in recent years, nitrogen removal via nitrite and real-time control processes using oxidation-reduction potential (ORP) and/or pH as parameters to control the aerobic and anaerobic cycles of a system has received much attention for animal wastewater treatment. During the biological treatment process, the emergent contaminants such as estrogen, antibiotics, and disinfec-tion reagents have been the focus of research recently, and degradation bacteria and resistance bacteria have also been extracted from activated sludge. The microbial analysis technique is also advancement in the field of biodegrada-tion bacteria and resistance bacteria. All of these advance-ments in research serve to improve wastewater treatment and decrease environmental hazards, especially for using manure as a fertilizer source for crop production.  相似文献   

11.
Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment.  相似文献   

12.
The aim of this work was to assess the efficacy for simultaneous enhanced removal of nitrogen and phosphorus including organics treating combined wastewater generated from a chemical laboratory using a bench-scale Intermittent Cyclic Process Bio-reactor (ICPBR). The performance efficacy indicated that the ICPBR system with solid retention time of 15 days achieved optimum efficiency with an overall removal of ammonia nitrogen (NH4-N), phosphorus (PO4-P), and chemical oxygen demand (COD) in the range, 83-92%, 74-93%, and 90-96%, respectively.  相似文献   

13.
14.
Zhang Z  Li H  Zhu J  Weiping L  Xin X 《Bioresource technology》2011,102(7):4646-4653
The poor quality of effluent discharged by municipal wastewater treatment plants (WWTPs) is threatening the safety of water ecology. This study, which integrated a field survey, batch tests, and microbial community identification, was designed to improve the effectiveness of the enhanced biological phosphorus removal (EBPR) process for WWTPs. Over two-thirds of the investigated WWTPs could not achieve total P in effluent lower than 0.5 mg/L, mainly due to the high ratio of chemical oxygen demand to P (28.6-196.2) in the influent. The rates of anaerobic P release and aerobic P uptake for the activated sludge varied from 0.22 to 7.9 mg/g VSS/h and 0.43 to 8.11 mg/g VSS/h, respectively. The fraction of Accumulibacter (PAOs: polyphosphate accumulating organisms) was 4.8 ± 2.0% of the total biomass, while Competibacter (GAOs: glycogen-accumulating organisms) accounted for 4.8 ± 6.4%. The anaerobic P-release rate was found to be an effective indicator of EBPR. Four classifications of the principal components were identified to improve the EBPR effluent quality and sludge activity.  相似文献   

15.
Liu Y  Shi H  Li W  Hou Y  He M 《Bioresource technology》2011,102(5):4008-4012
A study on the influence of chemical dosing on biological phosphorus and nitrogen removal was carried out through batch experimental tests by lab-scale and a full-scale wastewater treatment plant (employing a typical anaerobic-anoxic-oxic treatment). Results indicated that the inhibition of aluminum salt on biological phosphorus release and uptake processes is significant, as well as the inhibition of aluminum salt on Ammonia-Oxidizing Bacteria (AOB) is dominantly observed in the nitrification process and is recoverability. The inhibition of iron salt in biological phosphorus and nitrogen removal is weak, and only the inhibition of iron salt on phosphorus release at anaerobic periods emerge under large dosing. Evidence shows persistent inhibition from the accumulation of chemical doses in sludge mass. Intermittent chemical dosing proves recommendable for simultaneous chemical phosphorus removal.  相似文献   

16.
A sequencing batch reactor (SBR) system is demonstrated to biologically remove nitrogen, phosphorus and chemical oxygen demand (COD) to very low levels from abattoir wastewater. Each 6 h cycle contained three anoxic/anaerobic and aerobic sub-cycles with wastewater fed at the beginning of each anoxic/anaerobic period. The step-feed strategy was applied to avoid high-level build-up of nitrate or nitrite during nitrification, and therefore to facilitate the creation of anaerobic conditions required for biological phosphorus removal. A high degree removal of total phosphorus (>98%), total nitrogen (>97%) and total COD (>95%) was consistently and reliably achieved after a 3-month start-up period. The concentrations of total phosphate and inorganic nitrogen in the effluent were consistently lower than 0.2 mg P l−1 and 8 mg N l−1, respectively. Fluorescence in situ hybridization revealed that the sludge was enriched in Accumulibacter spp. (20–40%), a known polyphosphate accumulating organism, whereas the known glycogen accumulating organisms were almost absent. The SBR received two streams of abattoir wastewater, namely the effluent from a full-scale anaerobic pond (75%) and the effluent from a lab-scale high-rate pre-fermentor (25%), both receiving raw abattoir wastewater as feed. The pond effluent contained approximately 250 mg N l−1 total nitrogen and 40 mg P l−1 of total phosphorus, but relatively low levels of soluble COD (around 500 mg l−1). The high-rate lab-scale pre-fermentor, operated at 37°C and with a sludge retention time of 1 day, proved to be a cheap and effective method for providing supplementary volatile fatty acids allowing for high-degree of biological nutrient removal from abattoir wastewater.  相似文献   

17.
Many countries strive to reduce the emissions of nitrogen compounds (ammonia, nitrate, NOx) to the surface waters and the atmosphere. Since mainstream domestic wastewater treatment systems are usually already overloaded with ammonia, a dedicated nitrogen removal from concentrated secondary or industrial wastewaters is often more cost-effective than the disposal of such wastes to domestic wastewater treatment. The cost-effectiveness of separate treatment has increased dramatically in the past few years, since several processes for the biological removal of ammonia from concentrated waste streams have become available. Here, we review those processes that make use of new concepts in microbiology: partial nitrification, nitrifier denitrification and anaerobic ammonia oxidation (the anammox process). These processes target the removal of ammonia from gases, and ammonium-bicarbonate from concentrated wastewaters (i.e. sludge liquor and landfill leachate). The review addresses the microbiology, its consequences for their application, the current status regarding application, and the future developments.  相似文献   

18.
A two-phase and three-phase predictive fluidization model based on the characteristics of a system such as media type and size, flow rates, and reactor cross sectional area was proposed to calculate bed expansion, solid, liquid and gas hold up and specific surface area (SSA) of the biofilm particles. The model was subsequently linked to 1d AQUIFAS APP software (Aquaregen) to model biological nutrient removal in two phase (anoxic) and three phase (aerobic) fluidized bed bioreactors. The credibility of the proposed model for biological nutrient removal was investigated using the experimental data from a Twin Circulating Fluidized Bed Bioreactors (TCFBBR) treating synthetic and municipal wastewater.The SSA of bio-particles and volume of the expanded bed were simulated as a function of operational parameters. Two-sided t-tests demonstrated that simulated SCOD, NH4-N, NO3-N, TN, VSS and biomass yields agreed with the experimental values at the 95% confidence level.  相似文献   

19.
20.
A full-scale pre-denitrification process treating cokes wastewater containing toxic compounds such as phenols, cyanides and thiocyanate has shown good performance in carbon and nitrogen removal. However, field operators have been having trouble with its instability without being able to identify the causes. To clarify the main cause of these sudden failures of the process, comprehensive studies were conducted on the pre-denitrification process using a lab-scale reactor system with real cokes wastewater. First, the shock loading effects of three major pollutants were investigated individually. As the loading amount of phenol increased to 600 mg/L, more COD, TOC and phenol itself were flowed into the aerobic reactor, but phenol itself did not inhibit nitrification and denitrification, owing to the effect of dilution and its rapid biodegradation. Higher loading of ammonia or thiocyanate slightly enhanced the removal efficiency of organic matter, but caused the final discharge concentration of total nitrogen to be above its legal limit of 60 mg-N/L. Meanwhile, continuous inflow of abnormal wastewater collected during unstable operation of the full-scale pre-denitrification process, caused a sudden failure of nitrogen removal in the lab-scale process, like the removal pattern of the full-scale one. This was discovered to be due to the lack of inorganic carbon in the aerobic reactor where autotrophic nitrification occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号