首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
发菜藻蓝蛋白分离纯化的研究   总被引:2,自引:0,他引:2  
以发菜为材料,比较了提取液类型和饱和硫酸铵浓度对藻蓝蛋白提取的影响,并对藻蓝蛋白的提取程序和部分特性进行了研究。结果表明:50 mmol/L KP缓冲液(pH值7.2)是合适的提取液,体积分数为40%~50%饱和硫酸铵盐析效果优于其它浓度。经过DEAE-Toyopeal 650 S离子交换层析和SuperdexTM200凝胶过滤层析后,藻蓝蛋白纯度达6.2,最大吸收峰位于615 nm,荧光发射峰位于649 nm,由α和β2个亚基组成,其分子质量分别为18 051.17和19 142.27 Da。因此,发菜藻蓝蛋白分离纯化较为理想的程序为:藻粉→50 mmol/L KP缓冲液(pH值7.2)浸泡→French pressure(1 500 kg/cm2)破碎细胞→40%~50%饱和硫酸铵盐析→DEAE-Toyopeal 650 S离子交换层析→SuperdexTM200凝胶过滤层析→较纯的藻蓝蛋白。  相似文献   

2.
C-phycocyanin (C-PC) is a phycobiliprotein that can be used as a natural blue dye in the food and cosmetic industries, as a biomarker or as an agent in medical treatments, depending on its purity grade. Here we described for the first time a single-step purification process of C-PC extracted from the wet biomass of Spirulina (Arthrospira) platensis LEB-52 using ion exchange chromatography with pH gradient elution. Different conditions varying the elution buffers and volumes, the loading pH and the addition of salt in the elution buffer were studied. The chromatographic condition that resulted in high recovery and purity consisted in equilibration and washing with 0.025 mol/L Tris-HCl buffer pH 6.5 and elution combining a step with 0.08 mol/L NaCl in 0.025 mol/L Tris-HCl buffer pH 6.5 and a pH gradient elution with 0.05 mol/L citrate buffer pH 6.2–3.0. This process resulted in C-PC with purities of 4.2 and 3.5 with recoveries of 32.6 and 49.5 %, respectively, in one purification step.  相似文献   

3.
C-phycocyanin (C-PC) is a blue colored accessory photosynthetic pigment found in cyanobacteria. Some of the medicinal properties of Spirulina have been attributed to this pigment, which includes anticancer, antioxidant, and anti-inflammatory activity. We have screened cyanobacteria isolated from freshwater habitats in Florida for their high content of C-PC. Of 125 strains tested, one filamentous strain identified as Limnothrix sp. was selected for further research. This strain produced 18% C-PC of total dry biomass. Here we describe a simple method for obtaining C-PC of high purity without the use of ion exchange chromatography. The procedure is based on pigment precipitation from the cell lysate with an appropriate concentration of ammonium sulfate, then purification with activated carbon and chitosan, followed by a sample concentration using tangential flow filtration. We have shown that when the lower concentration of ammonium sulfate was used, C-PC with higher purity index was recovered. Characterization of C-PC from Limnothrix showed that it had an absorbance maximum at 620nm and fluorescence at 639nm. The molecular mass of intact C-PC was estimated to be ~50kDa with α and β subunits forming dimmers. When C-PC content per unit biomass was compared to that of marketed Spirulina powder, we found that Limnothrix was superior. C-phycocyanin from Limnothrix had an antioxidative activity on DPPH free radicals similar to that found in a natural antioxidant - rutin.  相似文献   

4.
The cyanobacterium Spirulina (Arthrospira) platensis is a good source of phycobiliprotein purification. C-phycocyanin (C-PC) is the major phycobiliprotein, while allophycocyanin (APC) is less abundant in S. platensis. Previously reported methods for C-PC purification are only able to offer either high purity or high efficiency. This paper describes one-step anion exchange chromatography method with continuous pH gradient elution for simultaneous purification of C-PC and APC with high purity and high recovery. Crude C-PC and APC were extracted and concentrated by ammonium sulfate fractionation at saturation of 25% and 60%, then purified on a DEAE-Sepharose Fast Flow chromatography column with continuous pH gradient elution from pH 5.0 to 3.6. After this single-step chromatography, C-PC and APC with high purity and recovery were simultaneously obtained. The purity ratios of C-PC and APC reached 5.59 (A620/A280) and 5.19 (A650/A280), respectively. Their purity was further demonstrated by electrophoresis and fluorescence emission spectroscopy. Moreover, the total recovery yield of pure C-PC and APC were 67.04% and 80.0%, representing 111.83 and 29.28 mg·g−1 lyophilized weight, respectively. The obtained C-PC and APC remained stable over a pH range of 4–9. This purification method for high purity and recovery of C-PC and APC proved to be fairly efficient compared with previously reported methods.  相似文献   

5.
目的 建立高纯度、高活性的虎血清IgG纯化方法。方法 用饱和硫酸铵沉淀虎血清得到IgG粗品;结合Hitrap Protein A亲和层析预装柱及阴离子交换层析法对粗品IgG进一步分离纯化,采用PAGE电泳和Western-Blot免疫印迹法鉴定IgG纯度和免疫活性。结果 80 mL虎血清亲和纯化得到84 mg IgG,阴离子交换层析纯化得到30 mg虎的IgG纯品。结论 建立了简便快速、纯度高、活性好的虎血清IgG的分离纯化方法,为虎血清IgG二级抗体的制备提供了高纯度、活性好的一级抗体免疫原。  相似文献   

6.
With an increased number of applications in the field of the avidin‐biotin technology, the resulting demand for highly‐purified protein avidin has drawn our attention to the purification process of avidin that naturally occurs in chicken egg white. The high‐throughput process development (HTPD) methodology was exploited, in order to evaluate purification process alternatives to commonly used ion‐exchange chromatography. In a high‐throughput format, process parameters for aqueous two‐phase extraction, selective precipitation with salts and polyethylene glycol, and hydrophobic interaction and mixed‐mode column chromatography experiments were performed. The HTPD strategy was complemented by a high‐throughput tandem high‐performance liquid chromatography assay for protein quantification. Suitable conditions for the separation of avidin from the major impurities ovalbumin, ovomucoid, ovotransferrin, and lysozyme were identified in the screening experiments. By combination of polyethylene glycol precipitation with subsequent resolubilization and separation in a polyethylene glycol/sulfate/sodium chloride two‐phase system an avidin purity of 77% was obtained with a yield >90% while at the same time achieving a significant reduction of the process volume. The two‐phase extraction and precipitation results were largely confirmed in larger scale with scale‐up factors of 230 and 133, respectively. Seamless processing of the avidin enriched bottom phase was found feasible by using mixed‐mode chromatography. By gradient elution a final avidin purity of at least 97% and yield >90% was obtained in the elution pool. The presented identification of a new and beneficial alternative for the purification of the high value protein thus represents a successful implementation of HTPD for an industrially relevant purification task. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:957–973, 2015  相似文献   

7.
羊抗人IgG的纯化及其在抗—HCV检测中的应用   总被引:3,自引:0,他引:3  
单独或联合应用辛酸沉淀、饱和硫酸铵沉淀、阴离子交换等方法对羊抗人IgG进行纯化,对纯化前后抗体的纯度和免疫学活性进行比较,并与辣根过氧化物酶连接,作为二抗用于抗-HCV的ELISA检测。结果表明,不同方法纯化的抗体其纯度和免疫学活性具有一定程度的差别,其中经辛酸+饱和硫酸铵沉淀纯化的抗体为最佳,凝胶扫描纯度为98.05%,比活性近1800,为纯化前的6.8倍。用痞根过氧化物酶标记后,作为酶标二抗检测HCV阴性和阳性标准血清各40份,阴性符合率为97.5%,阳性符合率为95%,可用于抗-HCV的ELISA检测。  相似文献   

8.
This article presents the use of caprylic acid (CA) to precipitate impurities from the protein A capture column elution pool for the purification of monoclonal antibodies (mAbs) with the objective of developing a two chromatography step antibody purification process. A CA‐induced impurity precipitation in the protein A column elution pool was evaluated as an alternative method to polishing chromatography techniques for use in the purification of mAbs. Parameters including pH, CA concentrations, mixing time, mAb concentrations, buffer systems, and incubation temperatures were evaluated on their impacts on the impurity removal, high‐molecular weight (HMW) formation and precipitation step yield. Both pH and CA concentration, but not mAb concentrations and buffer systems, are key parameters that can affect host–cell proteins (HCPs) clearance, HMW species, and yield. CA precipitation removes HCPs and some HMW species to the acceptable levels under the optimal conditions. The CA precipitation process is robust at 15–25°C. For all five mAbs tested in this study, the optimal CA concentration range is 0.5–1.0%, while the pH range is from 5.0 to 6.0. A purification process using two chromatography steps (protein A capture column and ion exchange polishing column) in combination with CA‐based impurity precipitation step can be used as a robust downstream process for mAb molecules with a broad range of isoelectric points. Residual CA can be effectively removed by the subsequent polishing cation exchange chromatography. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1515–1525, 2015  相似文献   

9.
An antimicrobial peptide produced by a new Bacillus species isolated from the Amazon Basin was purified and characterized. The antimicrobial peptide was purified by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography, and after the final purification step, one active fraction was obtained, designated BLS P34. Direct activity on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was observed. A single band on SDS-PAGE suggested that the peptide was purified to homogeneity and had a molecular mass of about 5 kDa. The molecular weight (MW) was accurately determined by mass spectroscopy as 1456 Da. The purified BLS P34 remained active over a wide temperature range and was susceptible to all proteases tested.  相似文献   

10.
Phycocyanin is a major protein produced by cyanobacteria, but very few phycocyanin-producing strains have been reported. In the present study, response surface methodology (RSM) involving a central composite design for four factors was successfully employed to optimize medium components for increased production of phycocyanin from Phormidium ceylanicum. The production of phycocyanin and interactions between sodium nitrate, calcium chloride, trace metal mix and citric acid stock were investigated and modeled. Under optimized condition P. ceylanicum was able to give 2.3-fold increase in phycocyanin production in comparison to commonly used BG 11 medium in 32 days. We have demonstrated the extraction, purification and characterization of C-phycocyanin using novel method based on filtration and single step chromatography. The protein was extracted by repeated freeze-thaw cycles and the crude extract was filtered and concentrated in stirred ultrafiltration cell (UFC). The UFC concentrate was then subjected to a single ion exchange chromatographic step. A purity ratio of 4.15 was achieved from a starting value of 1.05. The recovery efficiency of C-phycocyanin from crude extract was 63.50%. The purity was checked by electrophoresis and UV-Vis spectroscopy.  相似文献   

11.
A method for purification of beef spleen exonuclease is described, leading to electrophoretically homogeneous enzyme preparation. The method consists of three step fractionation of crude enzyme (after ammonium sulfate precipitation) as follows - ion exchange chromatography on ECTEOLA-cellulose, affinity chromatography on Concanavalin A-Sepharose and molecular sieving. The enzyme thus obtained is practically free of any contaminating activities - endonuclease or phosphomonoesterase. The molecular weight of the exonuclease was determined (98 000 +/- 3 000 daltons) and some other parameters of the enzyme were calculated. The investigation of the pH and thermo-stabilities showed significantly narrow limits of the exonuclease activity. The effect of the urea on the enzyme activity has also been evaluated.  相似文献   

12.
对中国北方海域江蓠属养殖龙须菜(Gracilaria lemaneiformis)进行了溴过氧化物酶分离纯化及性质的研究。粗提液中酶催化检测反应不稳定, 活力单位较低或无; 经DEAE cellulose 52离子交换层析, 去除了结构多糖及藻胆蛋白, 酶催化反应稳定, 得到比活力为2.8的电泳纯溴过氧化物酶。对纯化溴过氧化物酶性质研究表明: 该溴过氧化物酶为单体酶, 分子量约66 kD, 溴化单氯双甲酮时的最适pH值为6.0, 在40°C以下和pH 3.0~9.0之间有很好的稳定性。钒酸盐可提高该溴过氧化物酶的催化活性, 而Fe2+、Fe3+、Cu2+、Zn2+和EDTA等化合物对其有较显著的抑制作用。反应动力学实验表明, 该酶对Br-、H2O2的Km分别为53.5 mmol/L和38 mmol/L。  相似文献   

13.
龙须菜中溴过氧化物酶的分离纯化及酶学性质分析   总被引:2,自引:0,他引:2  
对中国北方海域江蓠属养殖龙须菜(Gracilaria lemaneiformis)进行了溴过氧化物酶分离纯化及性质的研究。粗提液中酶催化检测反应不稳定, 活力单位较低或无; 经DEAE cellulose 52离子交换层析, 去除了结构多糖及藻胆蛋白, 酶催化反应稳定, 得到比活力为2.8的电泳纯溴过氧化物酶。对纯化溴过氧化物酶性质研究表明: 该溴过氧化物酶为单体酶, 分子量约66 kD, 溴化单氯双甲酮时的最适pH值为6.0, 在40°C以下和pH 3.0~9.0之间有很好的稳定性。钒酸盐可提高该溴过氧化物酶的催化活性, 而Fe2+、Fe3+、Cu2+、Zn2+和EDTA等化合物对其有较显著的抑制作用。反应动力学实验表明, 该酶对Br-、H2O2的Km分别为53.5 mmol/L和38 mmol/L。  相似文献   

14.
The l,3-ß-glucan synthase (callose synthase, EC 2.4.1.34) was solubilized from cauliflower ( Brassica oleracea L.) plasma membranes with digitonin, and partially purified by ion exchange chromatography and gel filtration [fast protein liquid chromatography (FPLC)] using 3-[(cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS) in the elution buffers. These initial steps were necessary to obtain specific precipitation of the enzyme during product entrapment, the final purification step. Five polypeptides of 32, 35, 57, 65 and 66 kDa were highly enriched in the final preparation and are thus likely components of the callose synthase complex. The purified enzyme was activated by Ca2+, spermine and cellobiose in the same way as the enzyme in situ, indicating that no essential subunits were missing. The polyglucan produced by the purified enzyme contained mainly 1,3-linked glucose.  相似文献   

15.
Abstract

In this study, four major egg white proteins were purified by two step ion exchange chromatography followed by precipitation. Lysozyme and ovalbumin were separated with Q Sepharose Fast Flow anion exchange chromatography in the first step, resulting in two peaks of lysozyme and three peaks of ovalbumin with 87% and 70% purity by HPLC, respectively. Ovotransferrin was separated with CM-Toyopearl 650 M cation exchange chromatography in the second step, giving 80% purity. Ovomucoid was precipitated from the partial purified protein fraction from the first two steps, and concentrated in the final step to yield 90% purity. Protein recoveries were estimated to be 55, 21, 54, and 21% for lysozyme, ovotransferrin, ovalbumin, and ovomuciod, respectively. Lysozyme was identified from the purified peaks using zymogram refolding gel, whereas ovalbumin was identified by western blotting. Purified ovotransferrin and ovomucoid was identified by mass spectrometry. The results indicate that this purification process is adequate for preparation of lysozyme, ovalbumin, ovotransferrin, and ovomucoid, at least on a laboratory scale.  相似文献   

16.
Labrou NE 《Bioseparation》2000,9(2):99-104
Formate dehydrogenase (FDH, EC 1.2.1.2) from Candida boidinii was purified to homogeneity. The two step procedure comprised anion exchange chromatography (2.9-fold purification, 85% step yield, elution with 35 mM KCl), followed by dye-ligand affinity chromatography on immobilized Cibacron Blue 3GA (1.4-fold purification, 75% step yield, elution with 0.15 mM NAD+/2 mM Na2SO3). The procedure afforded FDH at 63.8% overall yield and a specific activity of 7.2 units/mg. The purity of the final FDH preparation was evaluated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), high performance gel filtration liquid chromatography (gfHPLC) and N-terminal amino acid sequencing. The analytical techniques showed the presence of a single polypeptide chain that corresponds to the molecular weight of 41 kDa (as determined by SDS-PAGE) and 81 kDa (as determined by gfHPLC).  相似文献   

17.
对米曲霉菌种F-81所产中性蛋白酶进行分离纯化。经过硫酸铵分级沉淀,DEAE-Sepharose Fast Flow阴离子交换层析和Sephacryl-S200凝胶过滤层析后,得到一种电泳纯的中性蛋白酶,纯化倍数为26.3倍,活性回收率为6.7%。经SDS-PAGE电泳测定其相对分子质量约为73.4kD。  相似文献   

18.
Prostatic acid phosphatase has been isolated from human seminal plasma. The purification method utilizes gel filtration on Sephadex G100, ammonium sulfate precipitation and a series of chromatographical steps including concanavalin A Sepharose 4B, anion exchange and gel filtration chromatography. The final product appears homogenous when analyzed by gel filtration on Sephadex G100. It gives one major band on SDS polyacrylamide gels. The specific activity is similar to that obtained by other purification schemes. The yield of the method described above has allowed to set up a sensitive radioimmunoassay of prostatic acid phosphatase.  相似文献   

19.
A procedure for isolation and purification of aspartate aminotransferase from wheat grain includes chromatography on DEAE cellulose, acidification-alkalization, precipitation with protamine sulfate, fractionation with ammonium sulfate, and chromatography on hydroxyapatite. The yield of protein was 27% with 95% purity. Crystals of the enzyme (0.05 x 0.025 x 0.015 mm3) were obtained from ammonium sulfate solution.  相似文献   

20.
Virus-like particles-based vaccines have been gaining interest in recent years. The manufacturing of these particles includes their production by cell culture followed by their purification to meet the requirements of its final use. The presence of host cell extracellular vesicles represents a challenge for better virus-like particles purification, because both share similar characteristics which hinders their separation. The present study aims to compare some of the most used downstream processing technologies for capture and purification of virus-like particles. Four steps of the purification process were studied, including a clarification step by depth filtration and filtration, an intermediate step by tangential flow filtration or multimodal chromatography, a capture step by ion exchange, heparin affinity and hydrophobic interaction chromatography and finally, a polishing step by size exclusion chromatography. In each step, the yields were evaluated by percentage of recovery of the particles of interest, purity, and elimination of main contaminants. Finally, a complete purification train was implemented using the best results obtained in each step. A final concentration of 1.40 × 1010 virus-like particles (VLPs)/mL with a purity of 64% after the polishing step was achieved, with host cell DNA and protein levels complaining with regulatory standards, and an overall recovery of 38%. This work has resulted in the development of a purification process for HIV-1 Gag-eGFP virus-like particles suitable for scale-up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号