首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-ray diffraction analysis of N-o-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamine (1), N-m-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamines, N-p-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamines, and their N-acetyl derivatives was performed. The sugar moieties always adopt 4C1 conformations, however, due to crystal packing forces they are always slightly distorted. It was found that except N-acetyl, N-m-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamine (5), none of the glucopyranosylamines studied in this paper form strong hydrogen bonds in the crystal lattice. Additionally, (5) crystallizes with a molecule of water, which occupies a special crystallographic position (on the twofold axis) and links two sugar molecules by hydrogen bonds. The CP MAS NMR spectra confirmed the presence of the intermolecular hydrogen bond involving the molecule of water in (5). Moreover, it was proved that in (1) an intramolecular hydrogen bond is formed between the glycosidic linkage and the nitro group.  相似文献   

2.
The X-ray diffraction analysis, (13)C CP MAS NMR spectra and powder X-ray diffraction patterns were obtained for selected methyl glycosides: alpha- and beta-d-lyxopyranosides (1, 2), alpha- and beta-l-arabinopyranosides (3, 4), alpha- and beta-d-xylopyranosides (5, 6) and beta-d-ribopyranoside (7) and the results were confirmed by GIAO DFT calculations of shielding constants. In X-ray diffraction analysis of 1 and 2, a characteristic shortening and lengthening of selected bonds was observed in molecules of 1 due to anomeric effect and, in crystal lattice of 1 and 2, hydrogen bonds of different patterns were present. Also, an additional intramolecular hydrogen bond with the participation of ring oxygen atom was observed in 1. The observed differences in chemical shifts between solid state and solution come from conformational effects and formation of various intermolecular hydrogen bonds. The changes in chemical shifts originating from intermolecular hydrogen bonds were smaller in magnitude than conformational effects. Furthermore, the powder X-ray diffraction (PXRD) performed for 4, 5 and 7 revealed that 7 existed as a mixture of two polymorphs, and one of them probably consisted of two non-equivalent molecules.  相似文献   

3.
The X-ray diffraction analysis of o-nitrophenyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside (1), m-nitrophenyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside, p-nitrophenyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside and o-nitrophenyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside was performed. It was found that except in the case of 1, all other crystals have one molecule in the independent part of the crystal unit cell. The results support the opinion that the nitro group does not conjugate effectively with the phenyl ring. In the 13C CP MAS spectrum of 1 the signals are split, confirming the presence of two independent molecules. Similarly, the 13C CP MAS NMR spectrum of p-nitrophenyl-2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside indicated the presence of two non-equivalent molecules in the crystal unit. One of these molecules has more conformational freedom enabling rotation of the phenyl ring.  相似文献   

4.
Double Quantum (DQ) NMR, which utilizes the magnetic dipole interaction between the (13)C atoms, was used for the complete assignment of the (13)C NMR resonances to the corresponding carbon ring positions for the monoclinic and triclinic allomorphs of methyl 4'-O-methyl-beta-D-cellobioside-(13)C(12)(1-(13)C(12)), a cellodextrin model compound of cellulose (13)C-perlabeled at the cellobiose core. The through-space interactions were used to identify the direct chemical bonds between adjacent carbon atoms in the rings. More importantly, the (13)C NMR signals of the carbon sites C1' and C4 involved in the glycosidic bond were identified. This allowed for the complete (13)C chemical shift assignment, that when combined with the X-ray crystallography data provides a complete characterization.  相似文献   

5.
Weixin Cheng 《Plant and Soil》1996,183(2):263-268
Due to the limitations in methodology it has been a difficult task to measure rhizosphere respiration and original soil carbon decomposition under the influence of living roots. 14C-labeling has been widely used for this purpose in spite of numerous problems associated with the labeling method. In this paper, a natural 13C method was used to measure rhizosphere respiration and original soil carbon decomposition in a short-term growth chamber experiment. The main objective of the experiment was to validate a key assumption of this method: the 13C value of the roots represents the 13C value of the rhizosphere respired CO2. Results from plants grown in inoculated carbon-free medium indicated that this assumption was valid. This natural 13C method was demonstrated to be advantageous for studying rhizosphere respiration and the effects of living roots on original soil carbon decomposition.  相似文献   

6.
The organic matter extracted from various mineral horizons of two forest soils, one under silver fir (Abies alba Mill.), the other under European beech (Fagus sylvatica L.), was fractionated by dialysis into three fractions, 100–1000, 1000–8000, and >8000Da. On a C basis, in all horizons the recovered organic matter amounted to less than a half of the total and was mainly composed of molecules >8000Da. The 100–1000Da fraction had a principal elemental composition profoundly different from the other two fractions, which, instead differed from each other significantly only for the S content and the molar ratio of C with N. No significant difference in this regard was found between soils. The richness in O and some typical absorption bands in the FT-IR spectra indicated that the 100–1000Da fraction had a lot of carboxyl moieties. The spectroscopic (13C NMR) investigation showed that the 1000–8000 and >8000Da fractions had a prevalently aliphatic nature and signals attributable to polysaccharides (O-alkyl C) revealed overall a high presence of non-humic biopolymers. These latter were significantly more abundant, suggesting a lower degree of humification, in the >8000Da fraction than in the 1000–8000Da fraction. Comparing soils, that under beech appeared significantly richer in O-alkyl C than that under fir. The organics extracted from the A horizon of both soils had positive 14C values, indicating recent synthesis mainly due to the present forest cover. The mean residence time (MRT) of the combined 100–1000Da and 1000–8000Da fractions and the >8000Da fraction increased with depth, even to about 5000 years in the more than 1-m deep BC horizons under beech. In some cases, and especially in the soil under fir, despite higher values of 13C denoting stronger microbial decomposition, the 100–8000Da fraction showed a higher MRT than that of the >8000Da fraction, perhaps due to its ascertained lower content of non-humic biopolymers.  相似文献   

7.
Summary A13C NMR study is reported of the hinge region of an intact mouse monoclonal antibody with a molecular weight of 150 K. Cys, Ile, and Pro analogs of the antibody labeled with13C at the carbonyl carbon were prepared by growing hybridoma cells in the serum-free media. Resonance assignments have been performed as described previously [Kato, K., Matsunaga, C., Igarashi, T., Kim, H., Odaka, A., Shimada, I. and Arata, Y. (1991)Biochemistry,30, 270–278]. The spectral data obtained show that13C NMR can give detailed information about the structure of the hinge region of the intact antibody molecule. Prospects for the future role of13C NMR in the structural analyses of larger proteins are briefly discussed.Dedicated to the memory of Professor V.F. Bystrov  相似文献   

8.
Summary Heteronuclear 2D (13C, 1H) and (15N, 1H) correlation spectra of (13C, 15N) fully enriched proteins can be acquired simultaneously with virtually no sensitivity loss or increase in artefact levels. Three pulse sequences are described, for 2D time-shared or TS-HSQC, 2D TS-HMQC and 2D TS-HSMQC spectra, respectively. Independent spectral widths can be sampled for both heteronuclei. The sequences can be greatly improved by combining them with field-gradient methods. By applying the sequences to 3D and 4D NMR spectroscopy, considerable time savings can be obtained. The method is demonstrated for the 18 kDa HU protein.Abbreviations HMQC heteronuclear multiple-quantum coherence spectroscopy - HSQC heteronuclear single-quantum coherence spectroscopy - HSMQC heteronuclear single- and multiple-quantum coherence spectroscopy - NOESY nuclear Overhauser enhancement spectroscopy  相似文献   

9.
Since glucose is the main cerebral substrate, we have characterized the metabolism of various 13C glucose isotopomers in rat brain slices. For this, we have used our cellular metabolomic approach that combines enzymatic and carbon 13 NMR techniques with mathematical models of metabolic pathways. We identified the fate and the pathways of the conversion of glucose carbons into various products (pyruvate, lactate, alanine, aspartate, glutamate, GABA, glutamine and CO2) and determined absolute fluxes through pathways of glucose metabolism. After 60 min of incubation, lactate and CO2 were the main end-products of the metabolism of glucose which was avidly metabolized by the slices. Lactate was also used at high rates by the slices and mainly converted into CO2. High values of flux through pyruvate carboxylase, which were similar with glucose and lactate as substrate, were observed. The addition of glutamine, but not of acetate, stimulated pyruvate carboxylation, the conversion of glutamate into succinate and fluxes through succinate dehydrogenase, malic enzyme, glutamine synthetase and aspartate aminotransferase. It is concluded that, unlike brain cells in culture, and consistent with high fluxes through PDH and enzymes of the tricarboxylic acid cycle, rat brain slices oxidized both glucose and lactate at high rates.  相似文献   

10.
Homoionic Na-, Ca-, and Al-clays were prepared from the <2 m fractions of Georgia kaolinite and Wyoming bentonite and mixed with sand to give artificial soils with 5, and 25% clay. The artificial soils were inoculated with microbes from a natural soil before incubation. Unlabelled and uniformly13C-labelled (99.9% atom) glucose were incorporated into the artificial soils to study the effects of clay types, exchangeable cations and clay contents on the mineralization of glucose-carbon and glucose-derived organic materials. Chemical transformation of glucose-carbon upon incorporation into microbial products and metabolites, was followed using solid-state13C CP/MAS NMR spectroscopy.There was a significant influence of exchangeable cations on the mineralization of glucose-carbon over a period of 33 days. At 25% clay content, mineralization of glucose-carbon was highest in Ca-soils and lowest in Al-soils. The influence of exchangeable cations on mineralization of glucose-carbon was more pronounced in soils with bentonite clay than those with kaolinite clay. Statistical analysis of data showed no overall effect of clay type on mineralization of glucose-carbon. However, the interactions of clay type with clay content and clay type with clay content and exchangeable cations were highly significant. At 25% clay content, the mineralization of glucose-carbon was significantly lower in Na- and Al-soils with Wyoming bentonite compared with Na- and Al-soils with Georgia kaolinite. For Ca-soils this difference was not significant. Due to the increased osmotic tension induced by the added glucose, mineralization of glucose-carbon was slower in soils with 5% clay than soils with 25% clay.Despite the differences in the chemical and physical characteristics of soils with Ca-, Na- and Al-clays, the chemical composition of organic materials synthesised in these soils were similar in nature. Assuming CP/MAS is quantitative, incorporation of uniformly13C-labelled glucose (99.9% atom) in these soils resulted in distribution of carbon in alkyl (24–25%), O-alkyl (56–63%), carbonyl (11–15%) and small amounts of aromatic and olefinic carbon (2–4%). However, as decomposition proceeded, the chemistry of synthesised material showed some changes with time. In the Ca- and Na-soils, the proportions of alkyl and carbonyl carbon decreased and that of O-alkyl carbon increased with time of incubation. However, the opposite trend was found for the Al-soil.Proton-spin relaxation editing (PSRE) subspectra clearly showed heterogeneity within the microbial products. Subspectra of the slowly-relaxing (long T1(H)) domains were dominated by alkyl carbon in long- and short-chain structures. The signals due to N-alkyl (55 ppm) and carbonyl carbon were also strong in these subspectra. These subspectra were very similar to those obtained for microbial and fungal materials and were probably microbial tissues attached to clay surfaces by polysaccharide extracellular mucilage. Subspectra of fast-relaxing (short T1(H)) domains comprised mostly O-alkyl and carbonyl carbon and were probably microbial metabolites released as neutral and acidic sugars into the extracellular environment, and strongly sorbed by clay surfaces.  相似文献   

11.
13C NMR (nuclear magnetic resonance) spectroscopy of extracts from patient tumor samples provides rich information about metabolism. However, in isocitrate dehydrogenase (IDH)-mutant gliomas, 13C labeling is obscured in oncometabolite 2-hydroxyglutaric acid (2HG) by glutamate and glutamine, prompting development of a simple method to resolve the metabolites. J-coupled multiplets in 2HG were similar to glutamate and glutamine and could be clearly resolved at pH 6. A cryogenically cooled 13C probe, but not J-resolved heteronuclear single quantum coherence spectroscopy, significantly improved detection of 2HG. These methods enable the monitoring of 13C–13C spin–spin couplings in 2HG expressing IDH-mutant gliomas.  相似文献   

12.
The objective of this study was to examine the chemical structure of the organic matter (SOM) of Oxisols soils in slash and burn agriculture, in relation to its biological properties and soil fertility. The CP/MAS 13C technique was used to identify the main structural groups in litter and fine roots as SOM precursors; to identify the changes on the nature of the SOM upon cultivation and the proportion of labile and stable components; and to identify the nature of the organics present in water extracts (DOC). Carbohydrates were the main structural components in litter whereas components such as carbonyl C, carboxyl C,O-alkyl C and alkyl C were more common in SOM. Phenolic C and the degree of aromaticity were similar in litter and SOM. Cultivation resulted in a small decrease in the relative proportion of carbohydrates in SOM, little change in the levels of O-alkyl C and carbonyl C, but an increase in carboxyl C, phenolic C and aromaticity of the SOM. The level of alkyl C in soil was higher than the level of O-alkyl C, indicating the importance of long-chain aliphatics along with lignins in the stabilization of the SOM in Oxisols. The SOM of Mollisols from the Canadian Prairies differed from the Oxisol, with a generally stronger expression of aromatic structures, particularly in a cultivated soil in relation to a native equivalent. Carbohydrate components were the predominant structures in the DOC, indicating their importance in nutrient cycling and vertical translocations in the Oxisol.  相似文献   

13.
The effects of adding D2SO4, and p-toluenesulfonic acid-d to D-cellobiose dissolved in D2O were investigated at 23 °C by plotting 13C NMR chemical shift changes (Δδ) against the acid to D-cellobiose molar ratio. 13C Chemical shifts of all 18 carbon signals from α and β anomers of D-cellobiose showed gradual decreases due to increasing acidity in aqueous D2SO4 medium. The C-1 of the α anomer showed a slightly higher response to increasing D+ concentration in the surrounding. In the aqueous p-toluenesulfonic acid-d medium, C-6′ and C-4′ carbons of both α, and β anomeric forms of D-cellobiose are significantly affected by increasing the sulfonic acid concentrations, and this may be due to a 1:1 interaction of p-toluenesulfonic acid-d with the C-6′, C-4′ region of the cellobiose molecule.  相似文献   

14.
Fu  Shenglei  Cheng  Weixin 《Plant and Soil》2002,238(2):289-294
Using a natural abundance 13C method, soil organic matter (SOM) decomposition was studied in a C3 plant – `C4 soil' (C3 plant grown in a soil obtained from a grassland dominated by C4 grasses) system and a C4 plant – `C3 soil' (C4 plant grown in a soil taken from a pasture dominated by C3 grasses) system. In C3 plant – `C4 soil' system, cumulative soil-derived CO2–C were higher in the soils planted with soybean (5499 mg pot–1) and sunflower (4484 mg pot–1) than that in `C4 soil' control (3237 mg pot–1) without plants. In other words, the decomposition of SOM in soils planted with soybean and sunflower were 69.9% and 38.5% faster than `C4 soil' control. In C4 plant – `C3 soil' system, there was an overall negative priming effect of live roots on the decomposition of SOM. The cumulative soil-derived CO2–C were lower in the soils planted with sorghum (2308 mg pot–1) and amaranthus (2413 mg pot–1) than that in `C3 soil' control (2541 mg pot–1). The decomposition of SOM in soils planted with sorghum and amaranthus were 9.2% and 5.1% slower than `C3 soil' control. Our results also showed that rhizosphere priming effects on SOM decomposition were positive at all developmental stages in C3 plant – `C4 soil' system, but the direction of the rhizosphere priming effect changed at different developmental stages in the C4 plant – `C3 soil' system. Implications of rhizosphere priming effects on SOM decomposition were discussed.  相似文献   

15.
The use of 13C NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically 13C labeled histidine residues in plastocyanin (PCu) from Anabaena variabilis (A.v.) are presented. Significant Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is observed for 13Cε1 nuclei in the histidine imidazole rings of A.v. PCu. The chemical shift changes obtained from the CPMG dispersion data are in good agreement with those obtained from the chemical shift titration experiments, and the CPMG derived exchange rates agree with those obtained previously from 15N backbone relaxation measurements. Compared to measurements of backbone nuclei, 13Cε1 dispersion provides a more direct method to monitor interchanging protonation states or other kinds of conformational changes of histidine side chains or their environment. Advantages and shortcomings of using the 13Cε1 dispersion experiments in combination with chemical shift titration experiments to obtain information on exchange dynamics of the histidine side chains are discussed.  相似文献   

16.
- Model composites, produced using cellulose from stationary cultures of the bacterium Gluconoacetobacter xylinus and tamarind xyloglucan, were examined by wide-angle X-ray scattering (WAXS) and CP/MAS solid-state (13)C NMR spectroscopy. The dominant crystallite allomorph of cellulose produced in culture media with or without xyloglucan was cellulose I(alpha) (triclinic). The presence of xyloglucan in the culture medium reduced the cross-section dimensions of the cellulose crystallites, but did not affect the crystallite allomorph. However, when the composites were refluxed in buffer, the proportion of cellulose I(beta) allomorph increased relative to that of cellulose I(alpha). In contrast, cellulose I(alpha) remained the dominant form when cellulose, produced in the absence of xyloglucan, was then heated in the buffer. Hence the presence of xyloglucan has a profound effect on the formation of the cellulose crystallites by G. xylinus.  相似文献   

17.
Metabolomics offers the potential to assess the effects of toxicants on metabolite levels. To fully realize this potential, a robust analytical workflow for identifying and quantifying treatment-elicited changes in metabolite levels by nuclear magnetic resonance (NMR) spectrometry has been developed that isolates and aligns spectral regions across treatment and vehicle groups to facilitate analytical comparisons. The method excludes noise regions from the resulting reduced spectra, significantly reducing data size. Principal components analysis (PCA) identifies data clusters associated with experimental parameters. Cluster-centroid scores, derived from the principal components that separate treatment from vehicle samples, are used to reconstruct the mean spectral estimates for each treatment and vehicle group. Peak amplitudes are determined by scanning the reconstructed mean spectral estimates. Confidence levels from Mann–Whitney order statistics and amplitude change ratios are used to identify treatment-related changes in peak amplitudes. As a demonstration of the method, analysis of 13C NMR data from hepatic lipid extracts of immature, ovariectomized C57BL/6 mice treated with 30 μg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or sesame oil vehicle, sacrificed at 72, 120, or 168 h, identified 152 salient peaks. PCA clustering showed a prominent treatment effect at all three time points studied, and very little difference between time points of treated animals. Phenotypic differences between two animal cohorts were also observed. Based on spectral peak identification, hepatic lipid extracts from treated animals exhibited redistribution of unsaturated fatty acids, cholesterols, and triacylglycerols. This method identified significant changes in peaks without the loss of information associated with spectral binning, increasing the likelihood of identifying treatment-elicited metabolite changes.  相似文献   

18.
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.  相似文献   

19.
The dynamics of threonine side chains of the Tenebrio molitor antifreeze protein (TmAFP) were investigated using natural abundance (13)C NMR. In TmAFP, the array of threonine residues on one face of the protein is responsible for conferring its ability to bind crystalline ice and inhibit its growth. Heteronuclear longitudinal and transverse relaxation rates and the [(1)H]-(13)C NOE were determined in this study. The C alpha H relaxation measurements were compared to the previously measured (15)N backbone parameters and these are found to be in agreement. For the analysis of the threonine side chain motions, the model of restricted rotational diffusion about the chi(1) dihedral angle was employed [London and Avitabile (1978) J. Am. Chem. Soc., 100, 7159-7165]. We demonstrate that the motion experienced by the ice binding threonine side chains is highly restricted, with an approximate upper limit of less than +/-25 degrees.  相似文献   

20.
Summary Dynamics of the backbone and some side chains of apo-neocarzinostatin, a 10.7 kDa carrier protein, have been studied from 13C relaxation rates R1, R2 and steady-state 13C-{1H} NOEs, measured at natural abundance. Relaxation data were obtained for 79 nonoverlapping C resonances and for 11 threonine C single resonances. Except for three C relaxation rates, all data were analysed from a simple two-parameter spectral density function using the model-free approach of Lipari and Szabo. The corresponding C–H fragments exhibit fast (e < 40 ps) restricted libration motions (S2=0.73 to 0.95). Global examination of the microdynamical parameters S2 and e along the amino acid sequence gives no immediate correlation with structural elements. However, different trends for the three loops involved in the binding site are revealed. The -ribbon comprising residues 37 to 47 is spatially restricted, with relatively large e values in its hairpin region. The other -ribbon (residues 72 to 87) and the large disordered loop ranging between residues 97–107 experience small-amplitude motions on a much faster (picosecond) time scale. The two N-terminal residues, Ala1 and Ala2, and the C-terminal residue Asn113, exhibit an additional slow motion on a subnanosecond time scale (400–500 ps). Similarly, the relaxation data for eight threonine side-chain C must be interpreted in terms of a three-parameter spectral density function. They exhibit slower motions, on the nanosecond time scale (500–3000 ps). Three threonine (Thr65, Thr68, Thr81) side chains do not display a slow component, but an exchange contribution to the observed transverse relaxation rate R2 could not be excluded at these sites. The microdynamical parameters (S2, e and R2ex) or (S infslow sup2 , S inffast sup2 and slow) were obtained from a straightforward solution of the equations describing the relaxation data. They were calculated assuming an overall isotropic rotational correlation time e for the protein of 5.7 ns, determined using standard procedures from R2/R1 ratios. However, it is shown that the product (1–S2e is nearly independent of e for residues not exhibiting slow motions on the nanosecond time scale. In addition, this parameter very closely follows the heteronuclear NOEs, which therefore could be good indices for local fast motions on the picosecond time scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号