首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A two-phase and three-phase predictive fluidization model based on the characteristics of a system such as media type and size, flow rates, and reactor cross sectional area was proposed to calculate bed expansion, solid, liquid and gas hold up and specific surface area (SSA) of the biofilm particles. The model was subsequently linked to 1d AQUIFAS APP software (Aquaregen) to model biological nutrient removal in two phase (anoxic) and three phase (aerobic) fluidized bed bioreactors. The credibility of the proposed model for biological nutrient removal was investigated using the experimental data from a Twin Circulating Fluidized Bed Bioreactors (TCFBBR) treating synthetic and municipal wastewater.The SSA of bio-particles and volume of the expanded bed were simulated as a function of operational parameters. Two-sided t-tests demonstrated that simulated SCOD, NH4-N, NO3-N, TN, VSS and biomass yields agreed with the experimental values at the 95% confidence level.  相似文献   

3.
The great spatial and temporal variability of nitrogen (N) processing introduces large uncertainties for quantifying N cycles in large scales, e.g. a watershed scale, and hence challenges the present techniques in measuring ecosystem N mass balance. The dual isotopes of nitrate (δ18O and δ15N) integrate signals for both nitrate sources and N processing, making them promising for studies on large scale N cycling. Here, the dual isotopes, as well as some ion tracers, from a subtropical river in south China were reported to identify the main nitrate sources and to assess the possible occurrence and degree of denitrification in the context of monsoon climate. Our results indicated that nitrification of reduced fertilizer N in soil zones was the main nitrate source, with sewage and manure as another important source in dry winter. Seasonal changes of denitrification was apparent by the ~1:2 enrichment of 18O and 15N from April to August, and suggested to occur over the watershed rather than in the river. The lowest denitrification (10%) occurred in April, when the fertilizer application was strongest and the monsoon rainfall abruptly increased, causing enhancement of leaching. The highest denitrification (48%) took place in August due to the high soil temperature and moisture. In December, denitrification was significant (26%) perhaps due to the high enough temperature for microbial activities, whereas the low soil moisture appeared to limit the degree of denitrification. This study suggests that the seasonal variations in denitrification should be taken into account when estimating regional N mass balance.  相似文献   

4.
The biological removal of nitrogen and phosphorus from nutrient-rich abattoir wastewater using granular sludge has been investigated. A lab-scale sequencing batch reactor, seeded with granular sludge developed using synthetic wastewater, was operated for 13 months under alternating anaerobic and aerobic conditions. It is demonstrated that the granules could be sustained and indeed further developed with the use of abattoir wastewater. The organic, nitrogen, and phosphorus loading rates applied were 2.7 gCOD L(-1) day(-1), 0.43 gN L(-1) day(-1), and 0.06 gP L(-1) day(-1), respectively. The removal efficiency of soluble COD, soluble nitrogen and soluble phosphorus were 85%, 93%, and 89%, respectively. However, the high suspended solids in the effluent limited the overall removal efficiency to 68%, 86%, and 74% for total COD, TN, and TP, respectively. This good nutrient removal was achieved through the process known as simultaneous nitrification, denitrification, and phosphorus removal, likely facilitated by the presence of large anoxic zones in the center of the granules. The removal of nitrogen was likely via nitrite optimizing the use of the limited COD available in the wastewater. Accumulibacter spp. were found to be responsible for most of the denitrification, further reducing the COD requirement for nitrogen and phosphorus removal. Mineral precipitation was evaluated and was not found to significantly contribute to the overall nutrient removal. It is also shown that the minimum HRT in a granular sludge system is not governed by the sludge settleability, as is the case with floccular sludge systems, but likely by the limitations associated with the transfer of substrates in granules.  相似文献   

5.
The treatment of municipal-type synthetic wastewater was carried out using a three stages net-like rotating biological contactor (NRBC). The results indicated that, compared with conventional rotating biological contactor (RBC), NRBC have several advantages, such as quick start-up, high biomass concentration and can handle high organic loading rates. The COD and total nitrogen removal rates achieved were 78.8–89.7% and 40.2–61.4%, respectively, in aerobic treatment of low COD municipal-type wastewater at hydraulic retention times (HRT) from 5 to 9 h. The COD removal rate achieved 80–95% when organic loading varied between 16 and 40 gCOD/m2 d. A large amount of nematodes were found in the NRBC system, which made the NRBC system produce relatively low amounts of waste sludge, due to their grazing.  相似文献   

6.
黑麦草水培系统对化粪池粪污滤液中氮磷净化效果   总被引:7,自引:0,他引:7  
利用黑麦草水培技术,研究粪污滤液低、中、高、超高4种施用量和1次、4次两种施用次数对黑麦草产量及黑麦草水培净化系统(RHS)N、P净化效率的影响.结果表明,黑麦草生物量以中施用量处理最高,RHS的N、P去除量则随施用量的增加而增加,但在超高施用量处理下,水质下降.黑麦草N、P吸收量在中、高和超高处理下差异不显著(黑麦草N、P最大吸收量分别为13.6 g·m-2和3.17 g·m-2).随施用量增加,通过黑麦草吸收去除的N、P比例下降.总负荷相同的情况下,施用次数增加有利于提高黑麦草产量和RHS的N、P净化效率.粪污滤液施用量与施用次数对黑麦草产量和RHS的N、P净化效率具有显著影响.选择适宜的施用量和施用次数是提高RHS净化效率和生产效率的关键.  相似文献   

7.
8.
The treatment of olive oil mill wastewater (OMW) with two phenol resistant algae, Ankistrodesmus braunii and Scenedesmus quadricauda, showed a limited reduction of phenol content after 5 d of treatment, irrespective of algal concentration. Otherwise, cultures of both algae, grown in the dark, degraded over 50% of the low molecular weight phenols contained in OMW, but they were not completely removed, but were biotransformed into other non-identified, aromatic compounds.  相似文献   

9.
Shen Z  Wang J 《Bioresource technology》2011,102(19):8835-8838
A novel kind of cross-linked starch/polycaprolactone (SPCL11) was prepared and used as carbon source and biofilm attachment carrier for denitrifying bacteria. The results showed that the average denitrification rate was 0.027 mg NO?-N/(g·h) in batch tests. The continuous fixed-bed experiments indicated that more than 90% NO?-N was removed, the denitrification rate reached 26.86 mg NO?-N/(L·h), and NO?-N concentration was below 0.16 mg/L. The formation of NH?-N was observed, but usually below 1.0 mg/L. Rapid biodegradation of starch on the surfaces of SPCL11 granules could cause an initial excess release of dissolved organic compound (DOC), and shortening HRT from 2h to 1h can result in sharp decrease of DOC.  相似文献   

10.
Two modified Ludzack-Ettinger (MLE)-type membrane-coupled bioreactors (MBRs) were investigated in this study for the purpose of removing both nitrogenous and carbonaceous pollutants from a synthetic wastewater. During the first MBR experiment, removal efficiencies were high (>90%) for chemical oxygen demand (COD) and ammonia, but total nitrogenous pollutant removal efficiency was poor (~25%). Bacterial community analysis of ammonia oxidizing bacteria (AOB) by a nested PCR-DGGE approach detected two Nitrosomonas-like populations and one Nitrosospira-like population. During the initial portion of the second MBR experiment, COD and ammonia removal efficiencies were similar to the first MBR experiment until the COD of the influent wastewater was increased to provide additional electron donors to support denitrification. Total nitrogen removal efficiencies eventually exceeded 90%, with a hydraulic residence time (HRT) of 24 h and a recirculation ratio of 8. When the HRT of the MBR experiment was decreased to 12 h, however, ammonia removal efficiency was adversely affected. A subsequent increase in the HRT to 18 h helped improve removal efficiencies for both ammonia (>85%) and total nitrogenous compounds (~70%). Our research demonstrates that MBRs can be effectively designed to remove both carbonaceous and nitrogenous pollutants. The ability of the microbial community to switch between anoxic (denitrifying) and oxic (nitrifying) conditions, however, represents a critical process constraint for the application of MLE-type MBR systems, such that little benefit is gained compared to conventional designs.  相似文献   

11.
Abstract The production of nitrogen-containing gases by denitrification in three organisms was examined using membrane inlet mass spectrometry. The effects of O2 (during both growth and maintenance) and of pH, nitrate concentration and carbon source were tested in non-proliferating cell suspensions. Two strains of Pseudomonas aeruginosa were capable of co-respiration of NO3 and O2 and, under controlled O2 supply, gave oscillatory denitrification. Variations in culture and assay conditions affected both the rate of denitrification and the ratio of end products (N2O:N2). Higher rates were seen following anaerobic growth. Optimum values of pH and nitrate concentration for denitrification are given. Generally, the optimum pH was 7.0–7.5, approximately that of the growth medium. Optimum nitrate concentration was generally 20 mM.  相似文献   

12.
The aim of this work was to remove nitrate-N and organic pollutants from wastewater of the dairy industry by denitrification. An artificially prepared wastewater, containing 250 mg/l nitrate-N and 1.5 g/l whey powder, was completely denitrified with removal of 90%–93% of the chemical oxygen demand (COD) of the whey powder by suspended or immobilized mixed cultures and by a suspended or immobilized pure culture that was isolated from the mixed culture inoculum. For the above COD/nitrate-N ratio of 6:1, the results indicated that the organic compounds of the wastewater served as electron donors for complete denitrification and that there was no need to add an external carbon source. In batch denitrification assays the suspended or immobilized mixed cultures proved to be more active and reacted faster than the isolated pure cultures. In continuous denitrification processes with immobilized pure or mixed cultures, the alginate beads, used for immobilization, were not stable for more than 12 days of incubation. The mixed free cultures removed the nitrate-N and COD continuously with no change of their activity for at least 15 days at an optimum hydraulic retention time of 0.27 days with a loading rate of 900 mg nitrate-N l−1 day−1. Received: 13 October 1997 /  Received revision: 16 December 1997 / Accepted: 19 December 1997  相似文献   

13.
Removal of nitrogen and phosphorus from wastewater by two green microalgae (Chlorella vulgaris and Scenedesmus rubescens) was investigated using a novel method of algal cell immobilization, the twin-layer system. In the twin-layer system, microalgae are immobilized by self-adhesion on a wet, microporous, ultrathin substrate (the substrate layer). Subtending the substrate layer, a second layer, consisting of a macroporous fibrous tissue (the source layer), provides the growth medium. Twin-layers effectively separate microalgae from the bulk of their growth medium, yet allow diffusion of nutrients. In the twin-layer system, algae remain 100% immobilized, which compares favourably with gel entrapment methods for cell immobilization. Both microalgae removed nitrate efficiently from municipal wastewater. Using secondary, synthetic wastewater, the two algae also removed phosphate, ammonium and nitrate to less than 10% of their initial concentration within 9 days. It is concluded that immobilization of C. vulgaris and S. rubescens on twin-layers is an effective means to reduce nitrogen and phosphorus levels in wastewater.  相似文献   

14.
The hypothesis of a recent reversal in the eutrophication of the Wadden Sea and the potential of inshore waters in denitrification is explored. Salinity, temperature and nitrate concentrations in the List Tidal Basin (Northern Wadden Sea) have been measured about twice weekly since 1984. Salinity has a clear seasonal cycle with lowest salinities of about 27 in late winter and highest salinities of about 31 in summer. Mean annual deviations from the long-term mean salinity correlate significantly with riverine freshwater discharge. Winter nitrate concentrations are generally high (about 50 μM on average). The major part of the variability is related to salinity (∼35%). Temperature had a minor impact (∼1%). Superimposed on this, a long-term decrease of about 1 μM per year was found. Together, these processes account for about 45% of the nitrate variability. The long-term decrease of about 2% per year is similar to continental riverine trend in total nitrogen loads. In contrast to the List Tidal Basin, salinity explained more than 90% of nitrate variability in the off-shore German Bight. Salinity (30) normalised winter nitrate data of the German Bight also show a long-term decreasing trend. Most of the List Tidal Basin data are either on or below the nitrate–salinity relation found in the German Bight. This observation suggests that denitrification has a major impact on the winter nitrate concentrations in the Northern Wadden Sea compared to the German Bight. It is hypothesised that a large part of the unexplained variability is related to weather-dependent changes in residence time of tidal water masses in the Wadden Sea and circulation patterns within the German Bight.  相似文献   

15.
Experimental work was carried out on nitrogen and phosphorus removal from real wastewater using a bench-scale SBR process. The phosphorus removal was stable and the phosphorus concentration remaining in the reactor was maintained within 1.5 ppm, regard-less of the addition of an external carbon source. In the case of nitrogen, an external carbon source was necessary for denitrification. The effect on denitrification with the addition of various carbon sources, such as glucose, methanol, acetate, and propionate, was also investigated. Acetate was found to be the most effective among those tested in this study. When 100 ppm (theoretical oxygen demand) of sodium acetate was added, the average rate of denitrifiaction was 2.73 mg NO3-N (g MLSS)−1 h−1, which wasca. 4 times higher than that with the addition of 200 ppm of methanol. The phosphorus and nitrogen concentrations were both maintained within 1.5 ppm by the addition of an appropriate amount of a carbon source during a long-term operation of the SBR. The mathematical modeling was performed using Monod kinetics, other microbial kinetics, mass balances, and stoichiometry. The modeling was found to be useful for predicting the SBR operation and optimizing the HRT.  相似文献   

16.
To improve denitrification performance and effective degradation of organic pollutants from micro-polluted groundwater simultaneously, a novel three-dimensional (3D) bio-electrochemical reactor was developed, which introduced activated carbon into a traditional two-dimensional (2D) reactor as the third electrode. The static and dynamic characteristics of the reactor were investigated with special attentions paid to the performance comparison of these two reactors. In the 3D reactor both TOC and nitrate removal efficiency were greatly improved, and the formation of nitrite byproduct is considerably reduced, comparing with that of the 2D reactor. The role of activated carbon biofilm was explored and possible remediation mechanisms for the 2D and 3D reactors were suggested. In such a 3D reactor, the denitrification rate improved greatly to 0.288 mg NO3–N/cm2/d and the current efficiency could reach as high as 285%. Further, it demonstrated good performance stably against variable conditions, indicating very promising in application for groundwater remediation.  相似文献   

17.
Organic carbon degradation experiments were carried out using flow-through reactors with sediments collected from an intertidal freshwater marsh of an eutrophic estuary (The Scheldt, Belgium). Concentrations of nitrate, nitrite, dissolved inorganic carbon (DIC), dissolved organic carbon, methane, dissolved cations (Ca2+, Mg2+, Na+ and K+), total dissolved Fe, phosphate and alkalinity were measured in the outflow solutions from reactors that were supplied with or without the terminal electron acceptor nitrate. Organic carbon mineralization rates were computed from the release rates of DIC after correcting for the contribution of carbonate mineral dissolution. The experiments ran for several months until nitrate reducing activity could no longer be detected. In the reactors supplied with nitrate, 10–13% of the bulk sedimentary organic carbon (SOC) was mineralized by the end of the experiments. In reactors receiving no nitrate, only 3–9% of the initial SOC was mineralized. Organic matter utilization by nitrate reducers could be described as the simultaneous degradation of two carbon pools with different maximum oxidation rates and half-saturation constants. Even when nitrate was supplied in non-limiting concentrations about half of the carbon mineralization in the reactors was due to fermentative processes, rather than being coupled to nitrate respiration. Fermentation may thus be responsible for a large fraction of the DIC efflux from organic-rich, nearshore sediments.  相似文献   

18.
普通小球藻对养殖污水脱氮除磷的效果研究   总被引:1,自引:0,他引:1  
随着我国养殖业的不断发展,养殖污水排放量的日益增加,养殖污水的高氮、磷含量导致水体富营养化问题日趋严重。小球藻是光能自养生物,能有效同化氮、磷,使污水中的氮、磷减少。本研究通过在实验室模拟不同氮、磷含量的养殖污水环境,分析小球藻对氮、磷的去除效果;在此基础上,用小球藻处理某养殖场污水;并联合膨润土与小球藻,探究两者脱氮除磷的协同作用能力及膨润土对小球藻细胞沉降的效果。结果表明,小球藻对模拟污水的氨氮去除率可达80%,对磷酸根的最高去除率接近100%;对养殖污水中的氮、磷也有一定的去除效果;但养殖污水成分复杂,小球藻的生长被抑制。膨润土与小球藻的结合,能够提高污水中的氮磷去除率并帮助藻细胞快速沉降,为污水处理后藻细胞的收集处理提供了有效方法。  相似文献   

19.
Various environmental conditions affecting total phosphorus removal from farm wastewater in a biofilm filter, process were investigated using loess balls andChromobacterium LEE-38 at a pilot plant. WhenChromobacterium LEE-38 was used, the removal efficiency of total phosphorous was approximately 10- or 5-fold higher than that ofAcinetobacter CHA-2-14 orAcinetobacter CHA-4-5, respectively. When a loess ball of 11–14 mm manufactured at a 960°C calcining temperature was used, the removal efficiency of total phosphorous was 90.0%. When 70% of the volume fraction was used, the maximum efficiency of total phosphorus removal was 93.1%. Notably, when the initial pH was in the range of 6.0 to 8.0, the maximum removal efficiency of total phosphorus was obtained after 30 days. When the operating temperature was in the range of 30 to 55°C, the maximum removal efficiencies of total phosphorus, 95.6 to 94.6%, were obtained. On the other hand, at operating temperatures below 20°C or above 40°C, the removal efficiency of total phosphorous decreased. Among the various processes, biofilm filter process A gave the highest removal efficiency of 96.4%. Pilot tests of total phosphorus removal using farm wastewater from the biofilm filter process A were carried out for 60 days under optimal condition. WhenAcinetobacters sp. Lee-11 was used, the average removal efficiency in thep-adsorption area was only 32.5%, and the removal efficiencies of chemical oxygen demand (COD) and biological oxygen demand (BOD) were 56.7 and 62.5%, respectively. On the other hand, whenChromobacterium LEE-38 was used, the average removal efficiency was 95.1%, and the removal efficiencies of COD and BOD were 91.3 and 93.2%, respectively. The first two authors contributed equally to this work.  相似文献   

20.
Denitrificationis a biological processin which nitrateand/or nitrite is reduced to gaseous nitrogen,dinitrogen(N2)or nitrous oxide(N2O)while carbon dioxide is thesecond gaseous product of the process.This is one of themain mechanisms of the global nitrogen cycle,and playsanimportant role as the reverse reaction of nitrogen fixa-tion in maintaining global environmental homeostasis[1].Denitrification has beenlongthought to be a unique char-acteristic of prokaryotes[2,3].Anumber of bacteria(such…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号