首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The nature of the lithium/hydrogen bonding between (CH2)2X(X: C=CH2, O, S) and LiY/HY(Y=F, Cl, Br) have been theoretically investigated at MP2/6-311++G (d, p) level, using Bader’s “atoms in molecules (AIM)” theory and Weinhold’s “natural bond orbital (NBO)” methodology. The molecule formation density differences (MFDD) of the titled complexes are analyzed. Two kinds of geometries of the lithium/hydrogen bonded complexes are compared. As a whole, the nature of lithium bond and hydrogen bond are different. For the same electron donor and the same acceptor, lithium bond is stronger than hydrogen bond. For the same electron acceptor and different kind of donors, the interaction energies follows the n-type> π-type > pseudo-π-type order. For the same (CH2)2X, the interaction energy increases in the sequence of Y=F, Cl and Br for lithium bond systems while it decreases for hydrogen bond systems. Electron transfer plays an important role in the formation of lithium bond systems while it is less important in the hydrogen bond systems.  相似文献   

2.
The aim of the study is to examine thermal behavior of water within reticulated structure of bacterial cellulose (BC) films by sub-ambient differential scanning calorimetry (DSC). BC films with different carbon source, either manitol (BC (a)) or glycerol (BC (b)), were produced by Acetobacter xylinum using Hestrin and Shramm culture medium under static condition at 30 ± 0.2°C for 3 days. BC samples were characterized by electron scanning microscopy and X-ray diffraction spectroscopy. The pore analysis was done by B.H.J. nitrogen adsorption. The pre-treated with 100% relative humidity, at 30.0 ± 0.2°C for 7 days samples were subjected to a between 25 and −150°C-cooling–heating cycle of DSC at 5.00°C/min rate. The pre-treated samples were also hydrated by adding 1 μl of water and thermally run with identical conditions. It is observed that cellulose fibrils of BC (a) were thinner and reticulated to form slightly smaller porosity than those of BC (b). They exhibited slightly but non-significantly different crystalline features. The freezable bound water behaved as a water confinement within pores rather than a solvent of polymer which is possible to use thermoporosimetry based on Gibb–Thomson equation to approach pore structure of BC. In comparison with nitrogen adsorption, it was found that thermoporosimetry underestimated the BC porosity, i.e., the mean diameters of 23.0 nm vs. 27.8 nm and 27.9 nm vs. 33.9 nm for BC (a) and BC (b), respectively, by thermoporosimetry vs. B.H.J. nitrogen adsorption. It may be due to large non-freezable water fraction interacting with cellulose, and the validity of pore range based on thermodynamic assumptions of Gibb–Thomson theory.  相似文献   

3.
Environmentally friendly microwave heating process was applied to the dissolution of cellulose in N-methylmorpholine-N-oxide (NMMO) with 105–490 W and 2450 MHz microwave energy until the dissolution completed. Microwave heating caused the decrease in the dissolution time and energy consumption. Cellulose/NMMO/water solutions with different cellulose concentrations were converted to the membrane to measure the crystallinity and degree of polymerization. It was shown that microwave heating with the power of 210 W is an alternative heating system for dissolution of cellulose in NMMO. The membranes obtained with two different heating methods showed the same crystallinity and degree of polymerization. As a result, microwave heating has an advantage in shortening reaction times, compared to conventional heating.  相似文献   

4.
It is known that graphene reacts with atomic hydrogen to form a hydrogenated sheet of graphene. In order to understand the nature of the interaction between hydrogen and lithium in hydrogenated samples, we have carried out first principle calculations. Density functional theory and molecular dynamics were used to study the interaction between an icosahedron Li13 cluster, and a graphene layer doped with a hydrogen atom. It was found that a hydrogen atom is levitated from the graphene layer and absorbed into the cluster of Li at 300?K and atmospheric pressure, with a binding energy far exceeding that of the adsorption energy of a hydrogen atom on the graphene layer.  相似文献   

5.
Carboxymethyl cellulose is widely used in many industrial aspects and also in laboratory due to its good biocompatibility. However, special researches on infrared especially aiming at the hydrogen bonds structure of carboxymethyl cellulose were relatively poor. We demonstrate here a full view of infrared spectroscopy in the temperature range of 40–220 °C, mainly aiming at the hydrogen bonds in the NaCMC film. The two important transition points was defined with DSC and together with Infrared analysis, that is, 100 °C corresponding to the complete loss of water molecules and 170 °C to the starting temperature point the O6H6 being oxidized. The series of IR spectra during heating from 40 to 220 °C was analyzed by the two-dimensional correlation method. We found that the water molecules bound with CO groups and OH groups. With the evaporating of water molecules, the hydrated CO groups gradually transited into non-hydrated CO groups. As the temperature continued to increase, the intrachain hydrogen bonds were weakened and transited into weak hydrogen bonds. When the temperature was higher than 170 °C, the O6H6 groups were gradually oxidized and thus the interchain hydrogen bonds formed between CH2COONa groups and O6H6 were weakened. In summary, we defined the main sorts of hydrogen bonds in carboxymethyl cellulose and pictured the changes of the hydrogen bonds structure during heating process, which may provide for the further application in both industry aspects and laboratory use.  相似文献   

6.
The fermentation of cellulose by a rumen anaerobic fungus in the presence of Methanobrevibacter sp. strain RA1 and Methanosarcina barkeri strain 227 resulted in the formation of 2 mol each of methane and carbon dioxide per mol of hexose fermented. Coculture of the fungus with either Methanobrevibacter sp. or M. barkeri produced 0.6 and 1.3 mol of methane per mol of hexose, respectively. Acetate, formate, ethanol, hydrogen, and lactate, which are major end products of cellulose fermentation by the fungus alone, were either absent or present in very low quantities at the end of the triculture fermentation (≤0.08 mol per mol of hexose fermented). During the time course of cellulose fermentation by the triculture, hydrogen was not detected (<1 × 10−5 atm; <0.001 kPa) and only acetate exhibited transitory accumulation; the maximum was equivalent to 1.4 mol per mol of hexose at 6 days which was higher than the total acetate yield of 0.73 in the fungus monoculture. The effect of methanogens is interpreted as a shift in the flow of electrons away from the formation of electron sink products lactate and ethanol to methane via hydrogen, favoring an increase in acetate, which is in turn converted to methane and carbon dioxide by M. barkeri. The maximum rate of cellulose degradation in the triculture (3 mg/ml per day) was faster than previously reported for bacterial cocultures and within 16 days degradation was complete. The triculture was used successfully also in the production of methane from cellulose in the plant fibrous materials, sisal (fiber from leaves of Agave sisalona L.) and barley straw leaf.  相似文献   

7.
Sixteen batch experiments were performed to evaluate the stability, kinetics, and metabolic paths of heat-shocked digester (HSD) sludge that transforms microcrystalline cellulose into hydrogen. Highly reproducible kinetic and metabolic data confirmed that HSD sludge could stably convert microcrystalline cellulose to hydrogen and volatile fatty acids (VFA) and induce metabolic shift to produce alcohols. We concluded that clostridia predominated the hydrogen-producing bacteria in the HSD sludge. Throughout this study the hydrogen percentage in the headspace of the digesters was greater than 50% and no methanogenesis was observed. The results emphasize that hydrogen significantly inhibited the hydrogen-producing activity of sludge when initial microcrystalline cellulose concentrations exceeded 25.0 g/L. A further 25 batch experiments performed with full factorial design incorporating multivariate analysis suggested that the ability of the sludge to convert cellulose into hydrogen was influenced mainly by the ratio of initial cellulose concentration (So) to initial sludge density (Xo), but not by interaction between the variables. The hydrogen-producing activity depended highly on interaction of So x (So/Xo). Through response surface analysis it was found that a maximum hydrogen yield of 3.2 mmol/g cellulose occurred at So = 40 g/L and So/Xo = 8 g cellulose/g VSS. A high specific rate of 18 mmol/(g VSS-d) occurred at So = 28 g/L and So/Xo = 9 g cellulose/g VSS. These experimental results suggest that high hydrogen generation from cellulose was accompanied by low So/Xo.  相似文献   

8.
Cyclic voltammetry was used for simultaneous formation and immobilization of nickel oxide nano-scale islands and catalase on glassy carbon electrode. Electrodeposited nickel oxide may be a promising material for enzyme immobilization owing to its high biocompatibility and large surface. The catalase films assembled on nickel oxide exhibited a pair of well defined, stable and nearly reversible CV peaks at about -0.05 V vs. SCE at pH 7, characteristic of the heme Fe (III)/Fe (II) redox couple. The formal potential of catalase in nickel oxide film were linearly varied in the range 1-12 with slope of 58.426 mV/pH, indicating that the electron transfer is accompanied by single proton transportation. The electron transfer between catalase and electrode surface, (k(s)) of 3.7(+/-0.1) s(-1) was greatly facilitated in the microenvironment of nickel oxide film. The electrocatalytic reduction of hydrogen peroxide at glassy carbon electrode modified with nickel oxide nano-scale islands and catalase enzyme has been studied. The embedded catalase in NiO nanoparticles showed excellent electrocatalytic activity toward hydrogen peroxide reduction. Also the modified rotating disk electrode shows good analytical performance for amperometric determination of hydrogen peroxide. The resultant catalase/nickel oxide modified glassy carbon electrodes exhibited fast amperometric response (within 2 s) to hydrogen peroxide reduction (with a linear range from 1 microM to 1 mM), excellent stability, long term life and good reproducibility. The apparent Michaelis-Menten constant is calculated to be 0.96(+/-0.05)mM, which shows a large catalytic activity of catalase in the nickel oxide film toward hydrogen peroxide. The excellent electrochemical reversibility of redox couple, high stability, technical simplicity, lake of need for mediators and short preparations times are advantages of this electrode. Finally the activity of biosensor for nitrite reduction was also investigated.  相似文献   

9.
This work discusses surface modification of cellulose paper specimens for compatibility with nitrogen and sulfur co-doped carbon dots (NSCDs) for lead ion sensing. The interaction of carbon dots (CDs) and cellulose fibers was investigated using silane or chitosan-modified cellulose papers. It was found that modified papers could reduce undesirable redistribution of CDs, during paper drying. Also, only chitosan-modified filter paper was suitable for the successful immobilization of NSCDs. The effect of paper type, chitosan amount, pH, and NSCDs concentration was also studied, and a Whatman No. 42 filter paper modified with chitosan (1% w/v), pH 8.0, and an NSCD concentration of 2.5 g L−1 being selected for further studies. The sensor exhibited high selectivity for lead(II) compared with other metal ions because lead(II) resulted in the most significant changes in the emitted light intensity. Variations in NSCDs fluorescence were measured using a fluorescence imaging system. The NSCDs-paper sensor showed a linear relationship between mean fluorescence intensity and lead(II) in the concentration range of 5.00–1.25 × 102 μmol L−1 with a correlation coefficient (R2) of 0.9988 and a detection limit of 4.50 μmol L−1. The suggested method showed satisfying results for lead(II) determination in different samples as a fast and low-cost approach with on-site application.  相似文献   

10.
In this study the oxidative behavior of carbons derived from cellulose and lignin were compared using thermogravimetric analysis (TGA). Specific surface area and chemical composition of the two types of carbon were analyzed using nitrogen adsorption at 77 K and infrared spectroscopy respectively. The results demonstrate that cellulose carbon has a higher reaction order and lower activation energy than lignin carbon under identical experimental conditions when they were prepared at temperatures lower than 500 °C. However, such differences were considerably reduced for the carbon samples prepared at temperatures greater than 700 °C. It was verified that lignin carbon is more stable than cellulose carbon due to its higher content of aromatic structures when they are prepared at lower temperature. The specific surface area and porosity have a more limited contribution to the differential oxidative behaviors of the two types of carbon. This research has significance related to the formation of carbon nanotubes from plant materials during low temperature carbonization.  相似文献   

11.
The esterification of cellulose from waste cotton fabric in a N,N-dimethylacetamide/lithium chloride solvent system was carried out using different types of fatty acid chloride including butyryl chloride, capryloyl chloride, and lauroyl chloride as esterifying agents, and N,N-dimethyl 1-4-aminopyridine as a catalyst under conventional and microwave activation. Microwave esterification was performed under 2.45 GHz with power varying from 90 to 450 W. The optimum conditions for esterification of cotton cellulose with various esterifying agents were investigated in terms of reaction time and temperature to attain appropriate %weight increase and degree of substitution of esterified-cellulose. The degree of substitution, functional group and chemical structure, and thermal stability of cellulose ester powder were characterized by 1H NMR, FTIR, and TGA/SDTA analysis. Morphologies, crystallinity, and solubility of modified cellulose by two different heating methods were compared.  相似文献   

12.
Sorption of Penicillium cellulase onto cotton linters samples differing in physical structure and onto KLASON - lignin from spruce has been investigated by determining cellobiase, CMCL- and ‘linters-activity’ as well as protein content of a cellulase culture filtrate before and after contact with the sorbent at different temperature for different time intervals. CMCL- and cellobiase-activity were found to be reduced much less by the sorption process onto the cellulose samples than ‘linters-activity’ and protein content. Sorption increased in the order: untreated linters < mercerized linters < wet fibrillated (‘colloidal milled’) linters. With the KLASON -lignin also a considerable sorption of the cellulase system was observed. Results are discussed with respect to preferential sorption of enzyme components.  相似文献   

13.
The increase of the price of fossil means, as well as their programmed disappearing, contributed to increase among appliances based on biomass and energy crops. The thermal behavior of Arundo donax by thermogravimetric analysis was studied under inert atmosphere at heating rates ranging from 5 to 20 °C min−1 from room temperature to 750 °C. Gaseous emissions as CO2, CO and volatile organic compounds (VOC) were measured and global kinetic parameters were determined during pyrolysis with the study of the influence of the heating rate. The thermal process describes two main phases. The first phase named active zone, characterizes the degradation of hemicellulose and cellulose polymers. It started at low temperature (200 °C) comparatively to wood samples and was finished at 350 °C. The pyrolysis of the lignin polymer occurred during the second phase from 350 to 750 °C, named passive zone. Carbon oxides are emitted during the active zone whereas VOC are mainly formed during the passive zone. Mass losses, mass loss rates and emission factors were strongly affected by the variation of the heating rate in the active zone. It was found that the global pyrolysis of A. donax can be satisfactorily described using global independent reactions model for hemicellulose and cellulose in the active zone. The activation energy for hemicellulose was not affected by a variation of the heating rate with a value close to 110 kJ mol−1 and presented a reaction order close to 0.5. An increase of the heating rate decreased the activation energy of the cellulose. However, a first reaction order was observed for cellulose decomposition. The experimental results and kinetic parameters may provide useful data for the design of pyrolytic processing system using A. donax as feedstock.  相似文献   

14.
Mechanically bendable and flexible functionalities are urgently required for next‐generation battery systems that will be included in soft and wearable electronics, active sportswear, and origami‐based deployable space structures. However, it is very difficult to synthesize anode and cathode electrodes that have high energy density and structural reliability under large bending deformation. Here, vanadium oxide (V2O5) and nickel cobalt oxide (NiCo2O4) nanowire‐carbon fabric electrodes for highly flexible and bendable lithium ion batteries are reported. The vanadium oxide and nickel cobalt oxide nanowires were directly grown on plasma‐treated carbon fabric and were used as cathode and anode electrodes in a full cell lithium ion battery. Most importantly, a pre‐lithiation process was added to the nickel cobalt oxide nanowire anode to facilitate the construction of a full cell using symmetrically‐architectured nanowire‐carbon fabric electrodes. The highly bendable full cell based on poly(ethylene oxide) polymer electrolyte and room temperature ionic liquid shows high energy density of 364.2 Wh kg?1 at power density of 240 W kg?1, without significant performance degradation even under large bending deformations. These results show that vanadium oxide and lithiated nickel cobalt oxide nanowire‐carbon fabrics are a good combination for binder‐free electrodes in highly flexible lithium‐ion batteries.  相似文献   

15.
In a crossover study, lithium was given orally at a dose of 56 mg/kg, prepared as suspension (0.5%) in carboxymethyl cellulose (CMC) and blood samples (1 ml) collected after 0-24 hr after drug administration. After a washout period of two weeks, nimesulide (10 mg/kg) was administered alongwith lithium (56 mg/kg) and blood samples were drawn at the same time intervals (0-24 hr) after drug administration. Plasma was separated and assayed for lithium by M 654 Na+/K+/Li+ analyzer and various pharmacokinetic parameters were calculated. C(max), K(el), t(1/2el) and AUC(0-alpha) of lithium were significantly increased when nimesulide was administered along with lithium as compared to control group.  相似文献   

16.
Using ball milled cellulose as the only carbon source Trichoderma viride was grown in a continuous flow culture at pH = 5.0 and T = 30°C. Steady-state values for cell protein, cellulose, and cellulase for different substrate concentrations (4–11 g/liter) and dilution rates (0.033–0.080 hr?1) were obtained. Under steady-state conditions, 50–75% of the cellulose was consumed indicating a critical dilution rate on 0.17 hr?1. Cellulase activity (U/ml) in the fermentation broth increased slightly with increasing substrate concentration and decreased with increasing dilution rate, while the specific cellulase productivity (U/mg cell protein·hr) was fairly independent of the dilution rate, with a maximum around D = 0.05 hr?1. Following step changes in substrate concentration and dilution rate, new steady-state values were reached after three to five residence times (cell protein and cellulose) and four to six residence times (celullase activity).  相似文献   

17.
Five free-living Frankia strains isolated from Casuarina were investigated for occurrence of hydrogenase activity. Nitrogenase activity (acetylene reduction) and hydrogen evolution were also evaluated. Acetylene reduction was recorded in all Frankia strains. None of the Frankia strains had any hydrogenase activity when grown on nickel-depleted medium and they released hydrogen in atmospheric air. After addition of nickel to the medium, the Frankia strains were shown to possess an active hydrogenase, which resulted in hydrogen uptake but no hydrogen evolution. The hydrogenase activity in Frankia strain KB5 increased from zero to 3.86 μ mol H2 (mg protein)−1 h−1 after addition of up to 1.0 μ M Ni. It is likely that the hydrogenase activity could be enhanced even more as a response on further addition of Ni. It is indicated in this study that absence of hydrogenase activity in free-living Frankia isolated from Casuarina spp. is due to nickel deficiency. Frankia living in symbiosis with Casuarina spp. show hydrogenase activity. Therefore, the results also indicate that the hydrogenase to some extent is regulated by the host plant and/or that the host plant supplies the symbiotic microorganism with nickel. Moreover, the result shows that this Frankia is somewhat different from Frankia isolated from Alnus incana and Comptonia peregrina ., i.e., Frankia isolated from A. incana and C. peregrina showed a small hydrogen uptake activity even without addition of nickel.  相似文献   

18.
The SEC-MALS-QELS (size-exclusion chromatography equipped with multiangle light scattering and quasi-elastic light scattering detectors) method using lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) and LiCl/1,3-dimethyl-2-imidazolidinone (LiCl/DMI) as mobile phases was applied to cellulose and cellulose tricarbanilate (CTC) samples with various average degree of polymerization (DP) values. Molecular conformations of cellulose and CTC in the solvents were then discussed and compared on the basis of the relationships between the radii of gyration (R(g,z) or S(2)(z)(1/2)), the hydrodynamic radii (R(h,z)), and weight-average DP (DP(w)) or the contour lengths (L(w)). The Benoit-Doty theory for wormlike polymer chains was applied to the R(g) vs L(w) data obtained, and the theoretical curves with Kuhn segment lengths l(K) of around 18 nm were found to fit the data of both cellulose and CTC molecules in the solvents. It was concluded from the obtained results that both cellulose and CTC molecules have conformations essentially identical to each other in the solvents; they behave as typical semiflexible chains in good solvents.  相似文献   

19.
High-resolution fibre neutron diffraction data were recorded from cellulose samples on a D19 diffractometer at the Institut Laue-Langevin (Grenoble). Highly crystalline cellulose I samples from Cladophora (cellulose I alpha + I beta) or Halocynthia (cellulose I beta) origin were prepared in the form of oriented films. Samples were studied in a hydrogenated form and in a hydrogen-deuterium exchanged deuterated form corresponding to all OH moieties being replaced by ODs. These samples, which diffracted to a resolution of around 0.9 A, gave diffraction diagrams consisting of several hundred independent diffraction spots. Crystalline cellulose II fibres resulting from the mercerization of flax were also studied in a hydrogenated form using NaOH/H2O as mercerizing medium and in a deuterated form using NaOD/D2O. Both of these samples diffracted to around 1.2 A, giving fibre diffraction diagrams slightly less resolved than those of cellulose I, but still consisting of more than one hundred independent diffraction spots. For cellulose I as well as for cellulose II, significant differences between the hydrogenated and deuterated patterns were observed and recorded. These new data should lead to improved structures for cellulose and direct identification of the position of hydrogen atoms involved in hydrogen bonding.  相似文献   

20.
The mechanism for thermal decomposition of cellulose and its main products   总被引:7,自引:0,他引:7  
D.K. Shen  S. Gu   《Bioresource technology》2009,100(24):6496-6504
Experiment is performed to investigate the mechanism of the cellulose pyrolysis and the formation of the main products. The evolution of the gaseous products is examined by the 3-D FTIR spectrogram at the heating rate of 5–60 K/min. A pyrolysis unit, composed of fluidized bed reactor, carbon filter, vapour condensing system and gas storage, is employed to investigate the products of the cellulose pyrolysis under different temperatures (430–730 °C) and residence time (0.44–1.32 s). The composition in the bio-oil is characterized by GC–MS while the gases sample is analyzed by GC. The effects of temperature and residence time on the main products in bio-oil (LG, 5-HMF, FF, HAA, HA and PA) are examined thoroughly. Furthermore the possible routes for the formation of the products are developed from the direct conversion of cellulose molecules and the secondary reactions of the fragments. It is found that the formation of CO is enhanced with elevated temperature and residence time, while slight change is observed for the yield of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号