首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, chemically treated Helianthus annuus flowers (SHC) were used to optimize the removal efficiency for Cr(VI) by applying Response Surface Methodological approach. The surface structure of SHC was analyzed by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Analysis (EDX). Batch mode experiments were also carried out to assess the adsorption equilibrium in aqueous solution. The adsorption capacity (qe) was found to be 7.2 mg/g. The effect of three parameters, that is pH of the solution (2.0-7.0), initial concentration (10-70 mg/L) and adsorbent dose (0.05-0.5 g/100 mL) was studied for the removal of Cr(VI) by SHC. Box-Behnken model was used as an experimental design. The optimum pH, adsorbent dose and initial Cr(VI) concentration were found to be 2.0, 5.0 g/L and 40 mg/L, respectively. Under these conditions, removal efficiency of Cr(VI) was found to be 90.8%.  相似文献   

2.
The study explores utilization of waste cyanobacterial biomass of Nostoc linckia from a lab-scale hydrogen fermentor for the biosorption of Cr(VI) from aqueous solution. The biomass immobilized in alginate beads was used for removal of the metal in batch mode optimizing the process conditions adopting response surface methodology (RSM). Kinetic studies were done to get useful information on the rate of chromium adsorption onto the cyanobacterial biomass, which was found to follow pseudo second-order model. Four important process parameters including initial metal concentration (10-100 mg/L), pH (2-6), temperature (25-45 °C) and cyanobacterial dose (0.1-2.0 g) were optimized to obtain the best response of Cr(VI) removal using the statistical Box-Behnken design. The response surface data indicated maximum Cr(VI) biosorption at pH 2-4 with different initial concentrations of the metal in the aqueous solution. The biosorbent could remove 80-90% chromium from solutions with initial metal concentration of 10-55 mg/L. Involvement of the surface characteristics of the biomass was studied through its scanning electron micrographs and Fourier transform infrared (FTIR) analysis.  相似文献   

3.
Hexavalent chromium reduction and accumulation by Acinetobacter AB1 isolated from Fez tanneries effluents were tested. The effects of some environmental factors such as pH, temperature, and exposure time on Cr(VI) reduction and resistance were investigated. We found that this strain was able to resist to concentrations as high as 400 mg/l of Cr(VI). Moreover, pH 10 and the temperature 30°C constitute favourable conditions to the growth and reduction of Acinetobacter AB1. Complete reduction of Cr(VI) was observed at low initial Cr(VI) concentrations of 50 mg/l after 72 h of incubation. Furthermore, Transmission electron microscope (TEM) analysis showed morphological changes in AB1 strain due 48H exposure to 100 mg/l chromate concentration and revealed circular electron dense (dark black point) inclusion within the cell cytoplasm suggesting chromium deposition within the cells.  相似文献   

4.
Chromium(VI) compounds (e.g. chromates) are cytotoxic, mutagenic, and potentially carcinogenic. The reduction of Cr(VI) can yield reactive intermediates such as Cr(V) and reactive oxygen species. Bronchial epithelial cells are the primary site of pulmonary exposure to inhaled Cr(VI) and are the primary cells from which Cr(VI)-associated human cancers arise. BEAS-2B cells were used here as a model of normal human bronchial epithelium for studies on the reductive activation of Cr(VI). Cells incubated with Na2CrO4 exhibited two Cr(V) ESR signals, g = 1.979 and 1.985, which persisted for at least 1 h. The g = 1.979 signal is similar to that generated in vitro by human microsomes and by proteoliposomes containing P450 reductase and cytochrome b5. Unlike many cells in culture, these cells continued to express P450 reductase and cytochrome b5. Studies with the non-selective thiol oxidant diamide indicated that the g = 1.985 signal was thiol-dependent whereas the g = 1.979 signal was not. Pretreatment with phenazine methosulfate eliminated both Cr(V) signals suggesting that Cr(V) generation is largely NAD(P)H-dependent. ESR spectra indicated that a portion of the Cr(VI) was rapidly reduced to Cr(III). Cells incubated with an insoluble chromate, ZnCrO4, also generated both Cr(V) signals, whereas Cr(V) was not detected with insoluble PbCrO4. In clonogenic assays, the cells were very sensitive to Na2CrO4 and ZnCrO4, but considerably less sensitive to PbCrO4.  相似文献   

5.
The tannery industry process involves chromium (Cr) salts as a main constituent of the process. The Cr recovery is a part of the process where other salts are used to achieve separation and recovery for using Cr back in the process. The process steps may contain both forms of Cr [Cr(VI): hexavalent and Cr(III): trivalent]. The recovery of Cr from tannery industry effluent through biological systems is much needed. The diverse physicochemical characteristics of these effluents may limit the growth of microorganisms and hence the limitation towards possible practical application of microorganisms in real industrial effluent conditions. The present study attempted the ability of the Cr-resistant fungus Paecilomyces lilacinus [isolated through an enrichment culture technique at 25 000 mg l−1 of Cr(III)] to grow and remove Cr [Cr(VI) and Cr(III)] from two physicochemically different undiluted tannery industry effluents (tannery effluent and spent chrome effluent) in the presence of cane sugar as a carbon source. Such attempts are made keeping in view the potential integration of biological processes in the overall Cr removal and recovery processes to improve its efficiency and environmental sustainability. The fungus has broad pH tolerance range and can reduce Cr(VI) both in acidic (pH 5.5) and alkaline (pH 8.0) conditions. The fungus showed the ability to remove Cr(VI) (1.24 mg l−1) and total Cr (7.91 mg l−1) from tannery effluent below the detection level within 18 h and 36 h of incubation, respectively, and ability to accumulate 189.13 mg Cr g−1 of dry biomass within 600 h of incubation from spent chrome effluent [containing 3731.4 mg l−1 of initial Cr(III) concentration].At 200 mg l−1 of Cr(VI) in growth media, with 100% detoxification and with only 10.54% of total Cr accumulation in the biomass, P. lilacinus showed Cr(VI) reduction as a major mechanism of Cr(VI) detoxification. The time-course study revealed the log phase of the growth for the maximum specific reduction of Cr(VI) and stationary phase of the growth for its maximum specific accumulation of both the forms of Cr [Cr(III) and Cr(VI)] in its biomass. In growth media at 50 mg l−1 and 200 mg l−1 of Cr(VI), P. lilacinus showed 100% reduction within 36 h and 120 h of incubation, respectively. The high degree of positive correlation and statistically high degree of relationship (r2 = 0.941) between the fungal growth and % Cr(VI) reduction by the fungus support the role of metabolically active cellular growth in Cr(VI) reduction by the fungus. Results indicate that expanded solid (sludge) retention times (SRTs) (stationary phase) can be recommended for the removal of Cr(III) through accumulation. In case of Cr(VI), reduction needs a priority; therefore, a non-expanded SRT is recommended for designing a continuous-flow completely stirred bioreactor so that a log phase of cellular growth can be maintained during the reduction process. This study reveals the strong potential of P. lilacinus fungi for the removal of Cr from tannery effluent and spent chrome effluent.  相似文献   

6.
Based on the kinetics of Cr(VI) reduction by Escherichia coli ATCC 33456 and phenol degradation by Pseudomonas putida DMP-1, a mathematical model is developed to describe simultaneous Cr(VI) reduction and phenol degradation in the coculture of the two species. The developed model incorporates the toxicity effects of Cr(VI) and phenol on phenol degradation and Cr(VI) reduction in the coculture. The model illustrates the inhibitory effects of phenol on Cr(VI) reduction and Cr(VI) toxicity toward phenol degradation. The model also reveals the recoveries of the activities of the repressed bacterial cells with continuous Cr(VI) reduction and phenol degradation in the coculture. The model is capable of predicting simultaneous Cr(VI) reduction and phenol degradation within a broad range of Cr(VI) and phenol concentrations and under an appropriate composition of populations. However, the model simulates lower concentrations of phenol than experimental observations once Cr(VI) is reduced to a low level (<7 mg/L). The model simulation for Cr(VI) also deviates from experimental data when P. putida is outnumbered by E. coli by a ratio of 1:5. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
A strain HXL-2 from a lab-scale sequence batch reactor (SBR) was identified as Candida rugopelliculosa based on its physiological, biochemical characteristics, and 26S rDNA D1/D2 gene phylogenetic analysis. About 90% of the 50 mg/L Reactive blue 13(RB13) was degraded in 48 h after inoculation with strain HXL-2. The optimum efficiency of pH on decolorization was obtained at pH 5.The optimum efficiency temperature of C. rugopelliculosa HXL-2 decolorization RB13 was obtained at 28 °C. The color removal efficiency was obtained at 80.3% when the feed concentration reached 2000 mg/L. We first detected naphthalene-like compound is produced as degradation intermediate after the cleavage of RB13 azo bond, detected 1-chloro-3-aniline- 2,4,6-triazine. We proposed degradation pathway of Reactive blue 13 by Candida sp and proved RB13 degradation pathway by Candida sp. has some difference from RB13 degradation pathway by Pseudomonas sp.  相似文献   

8.
Chromium (Cr), as a mutagenic agent in plants, has received less attention than other metal pollutants. To understand if Cr induces microsatellite instability (MSI), Pisum sativum seedlings were exposed for 28 days to different concentrations of Cr(VI) up to 2000 mg L−1, and the genetic instability of ten microsatellites (SSRs) was analyzed. In plants exposed to Cr(VI) up to 1000 mg  L−1, MSI was never observed. However, roots exposed to 2000 mg L−1 displayed MSI in two of the loci analyzed, corresponding to a mutation rate of 8.3%. SSR2 (inserted in the locus for plastid photosystem I 24 kDa light harvesting protein) and SSR6 (inserted in the locus for P. sativum glutamine synthetase) from Cr(VI)-treated roots presented alleles with, respectively, less 6 bp and more 3 bp than the corresponding controls. This report demonstrates that: (a) SSRs technique is sensitive to detect Cr-induced mutagenicity in plants, being Cr-induced-MSI dose and organ dependent (roots are more sensitive); (b) two Cr-sensitive loci are related with thylakoid photophosphorylation and with glutamine synthetase, respectively; (c) despite MSI is induced by Cr(VI), it only occurs in plants exposed to concentrations higher than 1000 mg L−1 (values rarely found in real scenarios). Considering these data, we also discuss the known functional changes induced by Cr(VI) in photosynthesis and in glutamine synthetase activity.  相似文献   

9.
In this study, two Membrane Biological Reactors (MBR) with submerged flat membranes, one at lab-scale conditions and the other at pilot-plant conditions, were operated at environmental temperature to treat an industrial wastewater characterised by low phenol concentrations (8-16 mg L−1) and high salinity (∼150-160 mS cm−1). During the operation of both reactors, the phenol loading rate was progressively increased and less than 1 mg phenol L−1 was detected even at very low HRTs (0.5-0.7 days). Membrane fouling was minimized by the cross flow aeration rate inside the MBRs and by intermittent permeation. Microbial community analysis of both reactors revealed that members of the genera Halomonas and Marinobacter (gammaproteobacteria) were major components. Growth-linked phenol degradation by pure cultures of Marinobacter isolates demonstrated that this bacterium played a major role in the removal of phenol from the bioreactors.  相似文献   

10.
Pseudomonas aeruginosa K187, a protease- and chitinase-producing bacterium, exhibited protease and chitinase activity after three and five days of incubation, respectively. The protease and chitinase were both produced by using 1% squid pen powder (SPP) (w/v) as sole carbon and nitrogen source. After fermentation, the deproteinization rate of the recovered squid pen gradually increased up to 68% on the fourth day. After five days of fermentation, the production of GlcNAc, (GlcNAc)2, (GlcNAc)3, (GlcNAc)4 and (GlcNAc)5 were 1.18 mg/mL, 0.76 mg/mL, 1.02 mg/mL, 0.93 mg/mL and 0.90 mg/mL, respectively. The culture supernatant of K187 also exhibited activity of enhancing vegetable growth. For Brassica chinensis Linn treated with the fifth day culture supernatant, the total weight and total length increased up to 529% and 148%, respectively, compared to the control group. With this method, the production of protease, chitinase, N-acetyl chitooligosaccharides and biofertilizers may be useful for biological applications.  相似文献   

11.
In this study, we apply Fry's classification of environmental factors to demonstrate the limiting effects of oxygen and its interaction with temperature on the growth of juvenile P. lethostigma. We also evaluated the properties of two metabolic indices, marginal metabolic scope (MMS) and limiting oxygen concentration (LOC), as indicators of metabolic scope. We found that oxygen limitation has its greatest impact near the optimum temperature for growth of the species. At 29 °C a reduction from 6.00 mg/L to 4.00 mg/L caused a 50% reduction in growth rate while at 27 °C the reduction had no significant effect on growth rate. The results are particularly relevant because these temperatures and oxygen concentrations are commonly observed in nursery areas during summer months. At all temperatures fish from the lowest oxygen treatment (1.75 mg/L) had negative growth rates. Comparisons between daily oscillating oxygen treatments and constant treatments failed to demonstrate significant effects. At temperatures past the optimum, growth rates between the 6.00 mg/L and 4.00 mg/L treatments were not statistically different. LOC was significantly affected by temperature, oxygen, and their interaction. Estimates were positively correlated with oxygen treatment (R2 > 0.71) and negatively correlated with temperature at moderate and low oxygen concentrations (R2 > − 0.84). MMS was significantly affected by temperature and oxygen and was significantly correlated with oxygen treatment (R2 > − 0.91), but correlations with temperature were not as clear. In conclusion, oxygen and temperature interactions have significant effects on metabolic scope and growth rates of fish, well above the accepted hypoxia threshold of 2.00 mg/L and MMS has proved a useful estimator of the metabolic scope of the organism within an environment.  相似文献   

12.
Large amount of seed cake is generated as by-product during biodiesel production from Jatropha seeds. Presence of toxic phorbol esters restricts its utilization as livestock feed. Safe disposal or meaningful utilization of this major by-product necessitates the degradation of these phorbol esters. The present study describes the complete degradation of phorbol esters by Pseudomonas aeruginosa PseA strain during solid state fermentation (SSF) of deoiled Jatropha curcas seed cake. Phorbol esters were completely degraded in nine days under the optimized SSF conditions viz. deoiled cake 5.0 g; moistened with 5.0 ml distilled water; inoculum 1.5 ml of overnight grown P. aeruginosa; incubation at temperature 30 °C, pH 7.0 and RH 65%.SSF of deoiled cake seems a potentially viable approach towards the complete degradation of the toxic phorbol esters.  相似文献   

13.
The scope of this study is to evaluate the performance of internal loop airlift bioreactor (ILALR) in treating synthetic wastewater containing phenol and m-cresol, in single and multi component systems. The microbe utilized in the process was an indigenous mixed strain of Pseudomonas sp. isolated from a wastewater treatment plant. The reactor was operated at both lower and higher hydraulic retention times (HRTs) i.e., 4.1 and 8.3 h, respectively, by providing an inlet feed flow rate of 5 and 10 mL/min. Shock loading experiments were also performed up to a maximum concentration of 800 mg/L for phenol at 8.3 h HRT and 500 mg/L for m-cresol at 4.1 h HRT. The study showed complete degradation of both phenol and m-cresol, when they were degraded individually at a HRT of 8.3 h. Experiments with both phenol and m-cresol present as mixtures were performed based on the 22 full factorial design of experiments.  相似文献   

14.
Two chromium-resistant bacteria (IFR-2 and IFR-3) capable of reducing/transforming Cr(VI) to Cr(III) were isolated from tannery effluents. Isolates IFR-2 and IFR-3 were identified as Staphylococcus aureus and Pediococcus pentosaceus respectively by 16S rRNA gene sequence analyses. Both isolates can grow well on 2,000 mg/l Cr(VI) (as K2Cr2O7) in Luria-Bertani (LB) medium. Reduction of Cr(VI) was found to be growth-associated in both isolates and IFR-2 and IFR-3 reduced 20 mg/l Cr(VI) completely in 6 and 24 h respectively. The Cr(VI) reduction due to chromate reductase activity was detected in the culture supernatant and cell lysate but not at all in the cell extract supernatant of both isolates. Whole cells of IFR-2 and IFR-3 converted 24 and 30% of the initial Cr(VI) concentration (1 mg/l) in 45 min respectively at 37°C. NiCl2 stimulated the growth of IFR-2 whereas HgCl2 and CdCl2 significantly inhibited the growth of both isolates. Optimum temperature and pH for growth of and Cr(VI) reduction by both isolates were found to be between 35 and 40°C and pH 7.0 to 8.0. The two bacterial isolates can be good candidates for detoxification of Cr(VI) in industrial effluents.  相似文献   

15.
The sorption of heavy metals ions by immobilized Trichoderma viride biomass in a packed-bed column was studied. Fungal biomass T. viride was immobilized to Ca-alginate used for removal of Cr(VI), Ni(II) and Zn(II) ions from synthetic solutions and electroplating effluent. The experiments were conducted to study the effect of important design parameters such as bed height, flow rate and initial concentration of metal ions. The maximum sorption capacity was observed at flow rate 5 ml/min, bed height 20 cm and metal ions concentration 50 mg/L with immobilized biomass. Whereas, breakthrough time and saturation time decreased with increase flow rate and metal ions concentration and an inverse condition was found in bed height. The bed depth service time (BDST) Adams-Bohart model was used to analyze the experimental data. The regeneration efficiency was observed 40.1%, 75% and 53% for Cr(VI), Ni(II) and Zn(II) without any significant alteration in sorption capacity after 5th sorption-desorption cycles.  相似文献   

16.
Studies were carried out to evaluate the colour removal capacity of a moderately halotolerant bacterium, Bacillus firmus, in synthetic saline wastewater medium (SSWM) under static condition. The bacterial strain effectively decolourized Polar red B (an azo dye) in a wide range of sodium chloride (1-6%, w/v), dye (5-100 mg/L) and SDS (0.1-5.0 mg/L) concentrations and at pH range of 6-10 after 24 h of incubation. Cell immobilization studies indicated that colour removal was significantly higher (p < 0.05) in immobilized halotolerant cell systems than with free cells of B. firmus especially at salt concentrations higher than 4%. Results suggest the potential of using the immobilized halotolerant cell system for effective treatment of dye-contaminated saline wastewaters.  相似文献   

17.
The potential role of parameters in the reduction of hexavalent chromium [Cr(VI)] by Pseudomonas aeruginosa is not well documented. In this study, laboratory batch studies were conducted to assess the effect of a variety of factors, e.g., carbon sources, salinity, initial Cr(VI) concentrations, co-existing ions and a metabolic inhibitor, on microbial Cr(VI) reduction to Cr(III) by P. aeruginosa AB93066. Strain AB93066 tolerated up to 400 mg/L of Cr(VI) in nutrient broth medium compared to only 150 mg/L of Cr(VI) in nutrient agar. This bacteria exhibited different levels of resistance against Pb(II) (200 mg/L), Cd(II) (100 mg/L), Ni(II) (100 mg/L), Cu(II) (100 mg/L), Co(II) (50 mg/L) and Hg(II) (5 mg/L). Cr(VI) reduction was significantly promoted by the addition of glucose and glycerine but was strongly inhibited by the presence of methanol and phenol. The rate of Cr(VI) reduction increased with increasing concentrations of Cr(VI) and then decreased at higher concentrations. The presence of Ni(II) stimulated Cr(VI) reduction, while Pb(II), Co(II) and Cd(II) had adverse impact on reduction ability of this strain. Cr(VI) reduction was also inhibited by high levels of NaCl, various concentrations of sodium azide and 20 mM of SO4 2?, MoO4 2?, NO3 ?, PO4 3?. No significant relationship was observed between Cr(VI) reduction and redox potential of the culture medium. Scanning electron microscopy showed visible morphological changes in the cells due to chromate stress. Fourier transform infrared spectroscopy analysis revealed chromium species was likely to form complexes with certain functional groups such as carboxyl and amino groups on the surface of P. aeruginosa AB93066. Overall, above results are beneficial to the bioremediation of chromate-polluted industrial wastewaters.  相似文献   

18.
Heavy metal contamination of water bodies has been a cause of grave concern around the globe. Analysis of various industrial effluents has revealed a perilous level of Cr (VI) and Ni (II). Pseudomonas aeruginosa is an extracellular polymeric substances (EPSs) producing bacterium. EPS has a great potential in the sequestration of heavy metal ions. In the present study efforts have been made to understand the effect of time, pH, and temperature on production of EPS by P. aeruginosa (MTCC 1688). The extracted EPS has been applied for removal of Ni (II) and Cr (VI) ions from aqueous system. The results revealed that highest EPS yield (26 mg/50 mL) can be obtained after 96 h of incubation at pH 6 and 32 °C temperature in 50 mL of culture. Treatment of 10 mg/L Cr (VI) and Ni (II) with 30 mg/L EPS resulted in the removal of 26% and 9% of Cr (VI) and Ni (II), respectively. Fourier-transform infrared spectral analysis revealed the involvement of –OH, –NH, C–O, diketone, and ester functional groups of EPS in the attachment of Cr (VI) ion while involvement of amide and –CO groups in Ni (II) binding with EPS. Scaling-up the production of EPS using bioreactor may further help in developing an efficient process for treatment of water polluted with Cr and Ni.  相似文献   

19.
Induced production of chitinase during bioconversion of starch industry wastewater (SIW) to Bacillus thuringiensis var. kurstaki HD-1 (Btk) based biopesticides was studied in shake flask as well as in computer-controlled fermentors. SIW was fortified with different concentrations (0%; 0.05%; 0.1%; 0.2%; 0.3% w/v) of colloidal chitin and its consequences were ascertained in terms of Btk growth (total cell count and viable spore count), chitinase, protease and amylase activities and entomotoxicity. At optimum concentration of 0.2% w/v colloidal chitin, the entomotoxicity of fermented broth and suspended pellet was enhanced from 12.4 × 109 (without chitin) to 14.4 × 109 SBU/L and from 18.2 × 109 (without chitin) to 25.1 × 109 SBU/L, respectively. Further, experiments were conducted for Btk growth in a computer-controlled 15 L bioreactor using SIW as a raw material with (0.2% w/v chitin, to induce chitinase) and without fortification of colloidal chitin. It was found that the total cell count, spore count, delta-endotoxin concentration (alkaline solubilised insecticidal crystal proteins), amylase and protease activities were reduced whereas the entomotoxicity and chitinase activity was increased with chitin fortification. The chitinase activity attained a maximum value at 24 h (15 mU/ml) and entomotoxicity of suspended pellet reached highest (26.7 × 109 SBU/L) at 36 h of fermentation with chitin supplementation of SIW. In control (without chitin), the highest value of entomotoxicity of suspended pellet (20.5 × 109 SBU/L) reached at 48 h of fermentation. A quantitative synergistic action of delta-endotoxin concentration, spore concentration and chitinase activity on the entomotoxicity against spruce budworm larvae was observed.  相似文献   

20.
High concentration of heavy metals is toxic for most microorganisms and cause strict damage in wastewater treatment operations and often a physico-chemical pretreatment prior to biological treatment is considered necessary. However, in this study it has been shown that biological systems can adapt to Ni (II) and Cr (VI) when their concentration is below 10 and 20 mg/L, respectively. The aim of this study was to evaluate the effect of Ni (II) and Cr (VI) on the lab-scale rotating biological contactor process. It was found that, addition of Ni (II) up to 10 mg/L did not reduce the chemical oxygen demand removal efficiency and on the contrary concentrations below 10 mg/L improved the performance. The influent Ni (II) concentration of 1 mg/L was the concentration where the treatment efficiency produced a maximum COD removal of 86.5%. Moreover, Ni (II) concentration above 10 mg/L was relatively toxic to the system and produced lower treatment efficiencies than the baseline study without Ni (II). Turbidity and suspended solids removals were not stimulated to a great extent with nickel. Addition of Ni (II) did not seem to affect the pH of the system during treatment. The dissolved oxygen concentration did not drop below 4 mg/L at all concentrations of Ni (II) indicating aerobic conditions prevailed in the system. Experiments conducted with Cr (VI) revealed that addition of Cr (VI) up to 20 mg/L did not reduce the COD removal efficiency and on the contrary concentrations below 20 mg/L improved the performance. The influent Cr (VI) concentration of 1 mg/L was the concentration where the treatment efficiency produced a maximum COD removal of 88%. Turbidity and SS removals were more efficient at 5 mg/L Cr (VI) concentration, rather than 1 mg/L, which lead to the conclusion that 5 mg/L Cr (VI) concentration is the optimum concentration, in terms of COD, turbidity and SS removals. Similar with Ni (II) experiments, addition of Cr (VI) did not significantly affect the pH value of the effluent. The DO concentration remained above 5 mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号