首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Life Stories: The Creation of Coherence . Charlotte Linde.
Storied Lives: The Cultural Politics of Self-Understanding . George C. Rosenwald and Richard L. Ochberg, eds.  相似文献   

2.
3.
4.
5.
The function of homoglutathione (  相似文献   

6.
Bone allografts are frequently used during orthopaedic trauma cases or other reconstructive procedures. Most allografts are processed and cleaned before use. Our goals were to determine if an improved cleaning procedure compromises the strength or osteoinductivity of a graft. We compared our improved cleaning procedure to our standard cleaning procedure on cortical bone allograft. The cleaning procedures are generally composed of a series of chemical steps with nonionic detergents, hydrogen peroxide, and alcohol under time and temperature control, subjected to ultrasonic agitation. We tested the compressive strength, impact strength, and shear strength following the standard and improved cleaning procedures. Osteoinductivity was tested in 4 groups, using the improved cleaning procedure with four different hydrogen peroxide cleaning times: 0, 1, 3, and 5 h. Osteoinductivity was evaluated in vivo, using a 28-day implant in the hamstring muscle of an athymic, nude mouse. Results demonstrated that osteoinductivity is maintained with cleaning in hydrogen peroxide for up to 1 h, and that compressive strength, impact strength, and shear strength were all unaffected by the improved cleaning procedure. The improved cleaning procedure therefore did not compromise the strength or osteoinductivity of cortical bone allografts in comparison to the standard procedure.  相似文献   

7.
Intracellular levels of H2O2 in BHK-21 cells are not static but decline progressively with cell growth. Exposure of cells to inhibitors of catalase, or glutathione peroxidase, not only diminishes this decline but also depresses rates of cell proliferation, suggesting important growth regulatory roles for those antioxidant enzymes. Other agents which also diminish the growth-associated decline in intracellular levels of H2O2, such as the superoxide dismutase mimic, copper II—(3,5-diisopropylsalicylate)2, or docosahexaenoic acid, also reduced cell proliferation. In contrast, proliferation can be stimulated by the addition of 1 μM exogenous H2O2 to the culture medium. Under these conditions, however, intracellular levels of H2O2 are unaffected, whereas there is a reduction in intracellular levels of glutathione. It is argued that critical balances between intracellular levels of both H2O2 and glutathione are of significance in relation both to growth stimulation and inhibition. In addition growth stimulatory concentrations of H2O2, whilst initially leading to increased intracellular levels of lipid peroxidation breakdown products, appear to “trigger” their metabolism, possibly through aldehyde dehydrogenase, whose activity is also stimulated by H2O2  相似文献   

8.
外源NO供体对小麦离体叶片过氧化氢代谢的影响   总被引:12,自引:0,他引:12  
分析了外源一氧化氮 (nitricoxide ,NO)供体硝普钠 (sodiumnitroprusside ,SNP)对离体小麦 (TriticumaestivumL .)叶片过氧化氢 (H2 O2 )含量及其清除酶活力的调节作用。不同浓度的SNP (1mmol/L和 5mmol/L)处理 3 0min内 ,离体小麦叶片H2 O2 含量均有一个显著上升的过程 ,同时过氧化物酶 (POD)活力受到显著抑制 ,而过氧化氢酶 (CAT)活力则轻微下降 ;处理 3 0min到 2 4 0min时 ,POD活力的抑制状态基本维持不变 ,而CAT活力开始恢复上升 ,H2 O2 含量也相应地开始下降。粗酶液的体外实验也表明 ,SNP对POD和CAT的抑制类型不同 ,前者可能是不可逆抑制 ,后者则可能是可逆抑制。因此NO可通过对POD和CAT的不同抑制作用来调节小麦叶片内源H2 O2 含量  相似文献   

9.
A kill of 99.99% was obtained in cell suspensions of Escherichia coli and Streptococcus faecalis by incubation with hydrogen peroxide 1.0% (w/v) for 75 and 180 min respectively. The same kill was produced by 30 s irradiation with ultraviolet (u.v.) light in the presence of hydrogen peroxide 1.0% (w/v). This simultaneous treatment with u.v. and hydrogen peroxide produced a synergistic kill at least 30-fold greater than that produced by irradiation of cell suspensions of Esch. coli with or without subsequent incubation with hydrogen peroxide.  相似文献   

10.
The effects of adding hydrogen peroxide and peroxidase to wheat-flour dough on dityrosine formation and mixing characteristics were investigated. Dityrosine in wheat-flour dough was identified by HPLC with a fluorescence detector and by LC/MS/MS. Formation of dityrosine increased with the addition of hydrogen peroxide, and hydrogen peroxide plus peroxidase, to wheat-flour dough, while the addition of peroxidase had no effect on the amount of dityrosine formed. The mixing curve obtained by a doughgraph changed with the addition of hydrogen peroxide, and hydrogen peroxide plus peroxidase; the peak time was significantly delayed and the dough development time was extended. We found that dityrosine cross-links in wheat-flour dough increased with the addition of peroxidase plus hydrogen peroxide. It is thought that these cross-links can lead to polymerization of the proteins in wheat-flour dough.  相似文献   

11.
12.
Superoxlde dlsmutase (SOD) is ubiquitous in aerobic organisms and constitutes the first link In the enzyme scavenging system of reactive oxygen species. In the present study, species and organ diversity of SOD activity In a solution and In an in-gel assay system, as well as the effects of hydrogen peroxide (H202) on SOD activity, were Investigated. In a solution assay system, SOD activity of jackfruIt root, shoot, leaves, axes, and cotyledons, of maize embryos and endosperms, of mung bean leaves and seeds, of sacred lotus axes and cotyledons, and of rice and wheat leaves was Increased by 1-15 mmol/L H2O2. However, SOD activity In rice root and seeds, maize roots and leaves, mung bean roots and shoots, and wheat seeds was decreased by 1-15 mmol/L H2O2. The SOD activity of wheat root and soybean roots, leaves, axes, and cotyledons was Increased by 1-4 mmol/L H2O2, but was decreased by concentrations of H2O2 〉4 mmol/L. The SOD activity of soybean shoots was not affected by 1-15 mmol/L H2O2. The SOD activity In crude mltochondrla of jackfruIt, maize, and upas seeds, as well as In purified mitochondria of jackfruIt, was also Increased by 1-15 mmol/L H2O2. In the In-gel assay system, the SOD In jackfruIt cotyledons was comprised of Mn-SOD, Cu/Zn-SOD, and Fe-SOD, the crude mltochondria of jackfruit seeds and maizes embryo was comprised of Mn-SOD and Cu/ Zn-SOD, and the crude mltochondria of maize seeds was comprised of Mn-SOD only. In the present study, H2O2 markedly Inhibited Cu/Zn-SOD and Fe-SOD activity.  相似文献   

13.
14.
Peroxynitrite anion is a powerful oxidant which can initiate nitration and hydroxylation of aromatic rings. Peroxynitrite can be formed in several ways, e.g. from the reaction of nitric oxide with superoxide or from hydrogen peroxide and nitrite at acidic pH. We investigated pH dependent nitration and hydroxylation resulting from the reaction of hydrogen peroxide and nitrite to determine if this reaction proceeds at pH values which are known to occur in vivo. Nitration and hydroxylation products of tyrosine and salicylic acid were separated with an HPLC column and measured using ultraviolet and electrochemical detectors. These studies revealed that this reaction favored hydroxylation between pH 2 and pH4, while nitration was predominant between pH 5 and pH 6. Peroxynitrite is presumed to be an intermediate in this reaction as the hydroxylation and nitration profiles of authentic peroxynitrite showed similar pH dependence. These findings indicate that hydrogen peroxide and nitrite interact at hydrogen ion concentrations present under some physiologic conditions. This interaction can initiate nitration and hydroxylation of aromatic molecules such as tyrosine residues and may thereby contribute to the biochemical and toxic effects of the molecules.  相似文献   

15.
过氧化氢对培养心肌细胞损伤作用的研究   总被引:12,自引:1,他引:12  
氧化应激时产生大量的自由基,造成心肌细胞的损伤.过氧化氢(H2O2)是有机体氧化代谢产物,同时是一种活性氧.应用不同浓度的H2O2,分别于不同作用时间,动态观察其对心肌细胞的损伤作用.从实验结果看到,低浓度的H2O2(<0.1 mmol/L)作用2 h,使心肌细胞产生早期的生物化学的改变,如MDA产生堆积和细胞周期时相改变(G1期细胞增加,G2期细胞减少),此时心肌酶基本无泄漏,心肌细胞的死亡率很低,HE形态学观察基本无改变;随着H2O2浓度的增加(1~5 mmol/L)和作用时间的延长,进一步诱导细胞损伤加剧,LDH释放和MDA积累明显升高,细胞死亡率也明显增加,已具有统计学意义.同时可观察到其病理形态学的坏死性改变;当10 mmol/L H2O2作用时,细胞大量死亡,形态学可见细胞极度收缩、脱落,形成大面积的细胞脱失区.因此,H2O2作为一种活性氧自由基,依其浓度和作用时间不同可造成不同程度的心肌细胞的损伤.辣根过氧化物酶作为一种自由基清除剂,可明显减少H2O2活性氧自由基对心肌细胞的损伤作用.  相似文献   

16.
《Free radical research》2013,47(6):537-547
Peroxynitrite anion is a powerful oxidant which can initiate nitration and hydroxylation of aromatic rings. Peroxynitrite can be formed in several ways, e.g. from the reaction of nitric oxide with superoxide or from hydrogen peroxide and nitrite at acidic pH. We investigated pH dependent nitration and hydroxylation resulting from the reaction of hydrogen peroxide and nitrite to determine if this reaction proceeds at pH values which are known to occur in vivo. Nitration and hydroxylation products of tyrosine and salicylic acid were separated with an HPLC column and measured using ultraviolet and electrochemical detectors. These studies revealed that this reaction favored hydroxylation between pH 2 and pH4, while nitration was predominant between pH 5 and pH 6. Peroxynitrite is presumed to be an intermediate in this reaction as the hydroxylation and nitration profiles of authentic peroxynitrite showed similar pH dependence. These findings indicate that hydrogen peroxide and nitrite interact at hydrogen ion concentrations present under some physiologic conditions. This interaction can initiate nitration and hydroxylation of aromatic molecules such as tyrosine residues and may thereby contribute to the biochemical and toxic effects of the molecules.  相似文献   

17.
外源H2O2对盐胁迫下小麦幼苗生理指标的影响   总被引:2,自引:0,他引:2  
以‘郑麦-004’小麦幼苗为供试材料,采用Hoagland营养液培养方法,通过添加H2O2的清除剂过氧化氢酶(CAT)和抗坏血酸(ASA),研究0.05μmol/L外源H2O2处理对150mmol/L NaCl胁迫下小麦幼苗生长和抗氧化系统活性的影响,探讨低浓度外源H2O2对盐胁迫下小麦幼苗伤害的防护作用及其生理机制。结果显示:外源H2O2能缓解盐胁迫对小麦幼苗生长的抑制效应,降低丙二醛(MDA)含量和超氧自由基(O2.-)的产生速率,使小麦幼苗的株高、根长和干重均显著增加,并能提高超氧化物歧化酶(SOD)、过氧化物酶(POD)、CAT、抗坏血酸氧化酶(APX)等保护酶活性和抗氧化物质谷胱甘肽(GSH)的含量;而H2O2清除剂(CAT和AsA)能够逆转外源H2O2对盐胁迫下小麦幼苗生长的促进作用。研究表明,低浓度外源H2O2处理能促进小麦幼苗中的酶类和非酶类抗氧化剂的产生,减少脂质过氧化物的含量,提高小麦幼苗的耐盐性。  相似文献   

18.
19.
We investigated whether exposure to small concentrations of lead alters blood pressure and vascular reactivity. Male Wistar rats were sorted randomly into the following two groups: control (Ct) and treatment with 100 ppm of lead (Pb), which was added to drinking water, for 30 days. Systolic blood pressure (BP) was measured weekly. Following treatment, aortic ring vascular reactivity was assessed. Tissue samples were properly stored for further biochemical investigation. The lead concentration in the blood reached approximately 8 μg/dL. Treatment increased blood pressure and decreased the contractile responses of the aortic rings to phenylephrine (1 nM–100 mM). Following N-nitro-L arginine methyl ester (L-NAME) administration, contractile responses increased in both groups but did not differ significantly between them. Lead effects on Rmax were decreased compared to control subjects following superoxide dismutase (SOD) administration. Catalase, diethyldithiocarbamic acid (DETCA), and apocynin increased the vasoconstrictor response induced by phenylephrine in the aortas of lead-treated rats but did not increase the vasoconstrictor response in the aortas of untreated rats. Tetraethylammonium (TEA) potentiated the vasoconstrictor response induced by phenylephrine in aortic segments in both groups, but these effects were greater in lead-treated rats. The co-incubation of TEA and catalase abolished the vasodilatory effect noted in the lead group. The present study is the first to demonstrate that blood lead concentrations well below the values established by international legislation increased blood pressure and decreased phenylephrine-induced vascular reactivity. The latter effect was associated with oxidative stress, specifically oxidative stress induced via increases in hydrogen peroxide levels and the subsequent effects of hydrogen peroxide on potassium channels.  相似文献   

20.
Ultra-violet (u.v.) light irradiation of spores of Bacillus subtilis in the presence of hydrogen peroxide produced a rapid kill which was up to 2000-fold greater than that produced by irradiation alone. A kill of 99–99% was produced by 30s u.v. irradiation of spores of 6 strains of Bacillus and Clostridium in the presence of hydrogen peroxide 1.0 g/100 ml but with the more resistant spores of 9 further strains, irradiation in the presence of hydrogen peroxide 2–5 g/100 ml followed by mild heating was required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号