首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
The main goal of this research was to investigate how different factors influence membrane fouling. The impact of the different concentrations of activated sludge and the amount of extracellular polymer substances (EPS) were monitored. Two pilot plants with submerged membrane modules (hollow fiber and flat sheet) were operated and the raw wastewater was used.Humic substances were identified as the major components of EPS in the activated sludge (more than 34%) in both pilot plants. As the basic constituent in permeate, humic substances were identified as the most dominant components in the effluent (61%) in both pilot plants. Conversely, proteins were mostly analyzed in permeate and supernatant below the detection limit. The total amount of EPS [mg g−1 (VSS)] was similar for concentrations of activated sludge 6, 10 and 14 g L−1. Carbohydrates were identified as the component of EPS which tends most to clog membranes.  相似文献   

2.
In order to investigate the influence of hydraulic retention time (HRT) on organic pollutant removal in a submerged membrane bioreactor (SMBR), a laboratory-scale experiment was conducted using domestic sewage as influent. The dissolved oxygen (DO) concentration was controlled at 2.0– during the experimental period. The experiments demonstrated that when HRT was 3, 2 and 1 h, the reduction of chemical oxygen demand (COD) was 89.3–97.2, 88.5–97.3 and 80–91.1%, and the effluent COD was 38.9–11.2, 41.6–10.8 and 63.4–, respectively. It is suggested that an HRT of 1 h could meet the normal standard of discharged domestic sewage, and an HRT of 2 h could meet that of water reclamation. In addition, we use mathematical software MATLAB to analyse the relation of mixed liquor suspended solids (MLSS) and COD removal. The results showed that the optimum MLSS concentration should be maintained at around in the SMBR. The results also showed that the COD removal was related to HRT (τ), influent concentration (S0) and sludge loading rate for COD removal (NS). Moreover, the high COD removal could be achieved through adjusting τ, S0 and NS.  相似文献   

3.
The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L−1 respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests.  相似文献   

4.
The impact of phenolic compounds (around 3.2 g/L) resulted in a completely failed performance in a mesophilic UASB reactor treating coal gasification wastewater. The recovery strategies, including extension of HRT, dilution, oxygen-limited aeration, and addition of powdered activated carbon were evaluated in batch tests, in order to obtain the most appropriate way for the quick recovery of the failed reactor performance. Results indicated that addition of powdered activated carbon and oxygen-limited aeration were the best recovery strategies in the batch tests. In the UASB reactor, addition of powdered activated carbon of 1 g/L shortened the recovery time from 25 to 9 days and oxygen-limited aeration of 0-0.5 mgO2/L reduced the recovery time to 17 days. Reduction of bioavailable concentration of phenolic compounds and recovery of sludge activity were the decisive factors for the recovery strategies to tackle the impact of phenolic compounds in anaerobic treatment of coal gasification wastewater.  相似文献   

5.
This study focused on the VFA (volatile fatty acid) profile variation with organic loading rate (OLR) of a two stage thermophilic anaerobic membrane bioreactor (TAnMBR). The two stage TAnMBR treating high strength molasses-based synthetic wastewater was operated under a side-stream partial sedimentation mode at 55 °C. Reactor performances were studied at different OLR ranging from 5 to 12 kg COD m−3 d−1. Operational performance of TAnMBR was monitored by assessing biological activity, organic removal efficiency, and VFA. The major intermediate products of anaerobic digestion were identified as acetate, propionate, iso-butyrate, n-butyrate and valerate. Among them acetate and n-butyrate were identified as the most abundant components. Increase of OLR changes the predominant VFA type from acetic acid to n-butyric acid and the total VFA concentration was increased with increased OLR. Moreover, increased OLR increased organic removal efficiency up to second loading rate and dropped in third loading rate while biological activity was increased continuously.  相似文献   

6.
Ma Y  Huang M  Wan J  Wang Y  Sun X  Zhang H 《Bioresource technology》2011,102(6):4410-4415
A laboratory-scale anaerobic-anoxic-oxic (AAO) system was established to investigate the fate of DnBP. A removal kinetic model including sorption and biodegradation was formulated, and kinetic parameters were evaluated with batch experiments under anaerobic, anoxic, oxic conditions. However, it is highly complex and is difficult to confirm the kinetic parameters using conventional mathematical modeling. To correlate the experimental data with available models or some modified empirical equations, an artificial neural network model based on multilayered partial recurrent back propagation (BP) algorithm was applied for the biodegradation of DnBP from the water quality characteristic parameters. Compared to the kinetic model, the performance of the network for modeling DnBP is found to be more impressive. The results showed that the biggest relative error of BP network prediction model was 9.95%, while the kinetic model was 14.52%, which illustrates BP model predicting effluent DnBP more accurately than kinetic model forecasting.  相似文献   

7.
The possibility of shifting a methanogenic process for hydrogen production by changing the process parameters viz., organic loading rate (OLR) and hydraulic retention time (HRT) was evaluated. At first, two parallel semi-continuously fed continuously stirred tank reactors (CSTR) were operated as methanogenic reactors (M1 and M2) for 78 days. Results showed that a methane yield of 198-218 L/kg volatile solids fed (VS(fed)) was obtained when fed with grass silage at an OLR of 2 kgVS/m3/d and HRT of 30 days. After 78 days of operation, hydrogen production was induced in M2 by increasing the OLR from 2 to 10 kgVS/m3/d and shortening the HRT from 30 to 6 days. The highest H? yield of 42 L/kgVS(fed) was obtained with a maximum H? content of 24%. The present results thus demonstrate that methanogenic process can be shifted towards hydrogen production by increasing the OLR and decreasing HRT.  相似文献   

8.
Aerobic granular sludge: recent advances   总被引:26,自引:1,他引:26  
Aerobic granulation, a novel environmental biotechnological process, was increasingly drawing interest of researchers engaging in work in the area of biological wastewater treatment. Developed about one decade ago, it was exciting research work that explored beyond the limits of aerobic wastewater treatment such as treatment of high strength organic wastewaters, bioremediation of toxic aromatic pollutants including phenol, toluene, pyridine and textile dyes, removal of nitrogen, phosphate, sulphate and nuclear waste and adsorption of heavy metals. Despite this intensive research the mechanisms responsible for aerobic granulation and the strategy to expedite the formation of granular sludge, and effects of different operational and environmental factors have not yet been clearly described. This paper provides an up-to-date review on recent research development in aerobic biogranulation technology and applications in treating toxic industrial and municipal wastewaters. Factors affecting granulation, granule characterization, granulation hypotheses, effects of different operational parameters on aerobic granulation, response of aerobic granules to different environmental conditions, their applications in bioremediations, and possible future trends were delineated. The review attempts to shed light on the fundamental understanding in aerobic granulation by newly employed confocal laser scanning microscopic techniques and microscopic observations of granules.  相似文献   

9.
Five different mesophilic systems were evaluated in this study for the anaerobic treatment of food waste. Systems A and B were one stage methane with unsonicated and sonicated feeds, respectively, while, systems C and D were two-stage hydrogen and methane with unsonicated and sonicated feeds, respectively. System E comprised a novel sonicated biological hydrogen reactor (SBHR) followed by methane reactor. The results showed that sonication inside the reactor in the first stage (system E) showed superior results compared to all other systems. Overall VSS removal efficiencies of 67%, 59%, 51%, 44%, and 36% were achieved in systems E, D, C, B, and A, respectively. Volumetric hydrogen production rates of 4.8, 3.3, and 2.6 L H2/Lreactor d were achieved in the SBHR, CSTR with and without sonicated feed, respectively, while, methane production rates of 1.6, 2.1, 2.3, 2.6, and 3.2 L CH4/Lreactor d were achieved in systems A-E, respectively.  相似文献   

10.
11.
The protozoan community in eleven activated sludge wastewater treatment plants (WWTPs) in the greater Dublin area has been investigated and correlated with key physio-chemical operational and effluent quality parameters. The plants represented various designs, including conventional and biological nutrient removal (BNR) systems. The aim of the study was to identify differences in ciliate community due to key design parameters including anoxic/anaerobic stages and to identify suitable bioindicator species for performance evaluation. BNR systems supported significantly different protozoan communities compared to conventional systems. Total protozoan abundance was reduced in plants with incorporated anoxic and anaerobic stages, whereas species diversity was either unaffected or increased. Plagiocampa rouxi and Holophrya discolor were tolerant to anoxic/anaerobic conditions and associated with high denitrification. Apart from process design, influent wastewater characteristics affect protozoan community structure. Aspidisca cicada was associated with low dissolved oxygen and low nitrate concentrations, while Trochilia minuta was indicative of good nitrifying conditions and good sludge settleability. Trithigmostoma cucullulus was sensitive to ammonia and phosphate and could be useful as an indicator of high effluent quality. The association rating assessment procedure of Curds and Cockburn failed to predict final effluent biological oxygen demand (BOD5) indicating the method might not be applicable to treatment systems of different designs.  相似文献   

12.
In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of granule activity, improvement of long-term granule stability, and a better understanding of aerobic granulation mechanisms in CFRs, especially in full-scale applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号