共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of municipal solid waste (MSW) under mesophilic conditions can be enhanced by exchanging leachate between fresh waste and stabilised waste. The optimum point in time when leachate from an anaerobically digesting waste bed can be used to initiate degradation of another waste bed might occur when the leachate of the digesting waste bed is highly active with cellulolytic and methanogenic bacteria. In this study, the cellulolytic activity of the leachate was measured using the cellulose-azure assay. As products of hydrolysis are soluble compounds, the rate of generation of these compounds was estimated based on a soluble chemical oxygen demand (SCOD) balance around the fresh waste bed. It was found that once the readily soluble material present in MSW was washed out there was very little generation of SCOD without the production of methane, indicating that flushing leachate from a stabilised waste bed resulted in a balanced inoculation of the fresh waste bed. With the onset of sustained methanogenesis, the rate of SCOD generation equalled the SCOD released from the digester as methane. The experimental findings also showed that cellulolytic activities of the leachate samples closely followed the trend of SCOD generation. 相似文献
2.
Laboratory scale two-stage anaerobic digestion process model was operated for 280 days to investigate the feasibility to produce both hydrogen and methane from a mixture feedstock (1:1 (v/v)) of municipal food waste and sewage sludge. The maximum hydrogen and methane yields obtained in the two stages were 0.93 and 9.5 mL/mL feedstock. To eliminate methanogenic activity and obtain substantial hydrogen production in the hydrogen reactor, both feedstock and mixed liquor required treatment. The heat treatment (100 °C, 10 min) for feedstock and a periodical treatment (every 2-5 weeks, either heating, removal of biomass particles or flushing with air) for mixed liquor were effective in different extent. The methane production in the second stage was significantly improved by the hydrogen production in the first stage. The maximum methane production obtained in the period of high hydrogen production was more than 2-fold of that observed in the low hydrogen production period. 相似文献
3.
The effect of combination of mechanical and chemical pretreatment of municipal waste activated sludge (WAS) prior to anaerobic digestion was studied using a laboratory scale system with an objective to decrease volatile sulfur compounds in biogas and digested sludge. Mechanical pretreatment was conducted using depressurization of WAS through a valve from a batch pretreatment reactor pressurized at 75 ± 1 psi, while combined pretreatments were conducted using six different dosages of hydrogen peroxide (H2O2) and ferrous chloride (FeCl2) along with mechanical pretreatment. About 37-46% removal of H2S in biogas occurred for different combined pretreatment conditions. Sludge solubilization achieved due to the mechanical pretreatment increased total cumulative methane production by 8-10% after 30 days during the biochemical methane potential (BMP) test. The pretreatment also improved dewaterability in terms of time to filter (TTF), and decreased methyl mercaptan generation potential of the digested sludge. 相似文献
4.
The effects of crude glycerol on the performance of single-stage anaerobic reactors treating different types of organic waste were examined. A reactor treating the organic fraction of municipal solid waste produced 1400 mL CH4/d before the addition of glycerol and 2094 mL CH4/d after the addition of glycerol. An enhanced methane production rate was also observed when a 1:4 mixture of olive mill wastewater and slaughterhouse wastewater was supplemented with crude glycerol. Specifically, by adding 1% v/v crude glycerol to the feed, the methane production rate increased from 479 mL/d to 1210 mL/d. The extra glycerol-COD added to the feed did not have a negative effect on the reactor performance in either case. Supplementation of the feed with crude glycerol also had a significant positive effect on anaerobic fermentation reactors. Hydrogen yield was 26 mmole H2/g VS added and 15 mmole H2/g VS added in a reactor treating the organic fraction of municipal solid waste and a 1:4 mixture of olive mill and slaughterhouse wastewater. The addition of crude glycerol to the feed enhanced hydrogen yield at 2.9 mmole H2/g glycerol added and 0.7 mmole H2/g glycerol added. 相似文献
5.
Anaerobic membrane bioreactor and online ultrasonic equipment used to enhance membrane filtration were coupled to form a hybrid system (US-AnMBR) designed for long-term digestion of waste activated sludge. The US-AnMBR was operated under volatile solids loading rates of 1.1-3.7 gVS/L·d. After comprehensive studies on digestion performance and membrane fouling control in the US-AnMBR, the final loading rate was determined to be 2.7 gVS/L·d with 51.3% volatile solids destruction. In the US-AnMBR, the improved digestion was due to enhanced sludge disintegration, as indicated by soluble matter comparison in the supernatant and particle size distribution in the digested sludge. Maximum specific methanogenic activity revealed that ultrasound application had no negative effect on anaerobic microorganisms. Furthermore, implementing ultrasound effectively controlled membrane fouling and successfully facilitated membrane bioreactor operation. This lab-scale study demonstrates the potential feasibility and effectiveness of setting up a US-AnMBR system for sludge digestion. 相似文献
6.
This paper reviews anaerobic solubilisation of nitrogen municipal solid waste (MSW) and the effect of current waste management
practises on nitrogen release. The production and use of synthetically fixed nitrogen fertiliser in food production has more
than doubled the flow of excessive nitrogenous material into the community and hence into the waste disposal system. This
imbalance in the global nitrogen cycle has led to uncontrolled nitrogen emissions into the atmosphere and water systems. The
nitrogen content of MSW is up to4.0% of total solids (TS) and the proteins in MSW have a lower rate of degradation than cellulose.
The proteins are hydrolysed through multiple stages into amino acids that are further fermented into volatile fatty acids,
carbon dioxides, hydrogen gas, ammonium and reduced sulphur. Anaerobic digestion of MSW putrescibles could solubilise around
50% of the nitrogen. Thus, the anaerobic digestion of putrescibles may become an important method of increasing the rate of
nitrogen recycling back to the ecosystem. A large proportion of the nitrogen in MSW continues to end up inland fills; for
example, in the EU countries around 2 million tonnes of nitrogen is disposed of annually this way. Nitrogen concentration
in the leachates of existing landfills are likely to remain at a high level for decades to come. Under present waste management
practices with a relatively low level of efficiency in the source segregation or mechanical sorting of putrescibles from grey
waste and with a low level of control over landfill operating procedures, nitrogen solubilisation from landfilled waste will
take at least a century.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
7.
8.
Bocher BT Agler MT Garcia ML Beers AR Angenent LT 《Journal of industrial microbiology & biotechnology》2008,35(5):321-329
Many beer breweries use high-rate anaerobic digestion (AD) systems to treat their soluble high-strength wastewater. Biogas
from these AD systems is used to offset nonrenewable energy utilization in the brewery. With increasing nonrenewable energy
costs, interest has mounted to also digest secondary residuals from the high-rate digester effluent, which consists of yeast
cells, bacteria, methanogens, and small (hemi)cellulosic particles. Mesophilic (37 °C) and thermophilic (55 °C) lab-scale,
low-rate continuously-stirred anaerobic digestion (CSAD) bioreactors were operated for 258 days by feeding secondary residuals
at a volatile solids (VS) concentration of ∼40 g l−1. At a hydraulic retention time (HRT) of 15 days and a VS loading rate of 2.7 g VS l−1 day−1, the mesophilic bioreactor showed an average specific volumetric biogas production rate of 0.88 l CH4 l−1 day−1 and an effluent VS concentration of 22.2 g VS l−1 (43.0% VS removal efficiency) while the thermophilic bioreactor displayed similar performances. The overall methane yield
for both systems was 0.21 l CH4 g−1 VS fed and 0.47–0.48 l CH4 g−1 VS removed. A primary limitation of thermophilic digestion of this protein-rich waste is the inhibition of methanogens due
to higher nondissociated (free) ammonia (NH3) concentrations under similar total ammonium (NH4
+) concentrations at equilibrium. Since thermophilic AD did not result in advantageous methane production rates or yields,
mesophilic AD was, therefore, superior in treating secondary residuals from high-rate AD effluent. An additional digester
to convert secondary residuals to methane may increase the total biogas generation at the brewery by 8% compared to just conventional
high-rate digestion of brewery wastewater alone.
JIMB-2008: BioEnergy—Special issue. 相似文献
9.
A dual irradiation process involving aerobic thermophilic irradiation pretreatment (ATIP) and intermittent irradiation anaerobic digestion was developed to improve the digestion of waste-activated sludge. First, the effect of ATIP on further anaerobic digestion of activated sludge in batch mode was investigated. When exposed to ATIP for 24 h, the digestion reactor gave the highest methane yield, removed the most dissolved organic carbon (DOC) and showed the most effective reduction of VS compared to other irradiation times. This process was further enhanced by using an anaerobic fluidised-bed reactor packed with carbon felt in semi-continuous mode for digesting the pretreated activated sludge under intermittent irradiation conditions. Dual irradiation for 24 h followed by 60 min of anaerobic irradiation processing per day turned out to be optimal. This resulted in 65.3% of VS reduction, 83.9% of DOC removal ratio and 538 ml/g-VS of methane yield. 相似文献
10.
Volatile fatty acid production during anaerobic mesophilic digestion of tea and vegetable market wastes 总被引:3,自引:0,他引:3
Lata Kusum Rajeshwari K.V. Pant D.C. Kishore V.V.N. 《World journal of microbiology & biotechnology》2002,18(6):589-592
Extraction of the organic content from vegetable market waste and tea waste was carried out in a packed digester for 24 and 300 h respectively. The sequence of appearance of volatile fatty acids during digestion of both the substrates was found to be different. The sequence was (Acetic, Propionic) > (Isobutyric, Butyric) > Valeric for digestion of vegetable market waste while it was Isovaleric > (Isobutyric, Acetic) > Propionic during digestion of tea waste. During the course of digestion, the early appearance of an acid did not relate to its high concentration. The rate of production of acetic acid and propionic acid was found to be higher than other volatile acids during digestion of both the substrates, although it was approximately ten times higher for vegetable market waste compared to tea waste. The acids can be arranged in four groups according to their rate of production as Acetic > Propionic > Butyric > (Valeric, Isobutyric) for vegetable market waste and Acetic > Isobutyric > Isovaleric > Propionic for tea waste. 相似文献
11.
12.
Life cycle assessment of municipal waste water systems 总被引:3,自引:0,他引:3
Anne-Marie Tillman Mikael Svingby Henrik Lundström 《The International Journal of Life Cycle Assessment》1998,3(3):145-157
Life Cycle Assessment was applied to municipal planning in a study of waste water systems in Bergsjön, a Göteborg suburb, and Hamburgsund, a coastal village. Existing waste water treatment consists of mechanical, biological and chemical treatment. The heat in the waste water from Bergsjön is recovered for the district heating system. One alternative studied encompassed pretreatment, anaerobic digestion or drying of the solid fraction and treatment of the liquid fraction in sand filter beds. In another alternative, urine, faeces and grey water would separately be conducted out of the buildings. The urine would be used as fertilizer, whereas faeces would be digested or dried, before used in agriculture. The grey water would be treated in filter beds. Changes in the waste water system would affect surrounding technical systems (drinking water production, district heating and fertilizer production). This was approached through system enlargement. For Hamburgsund, both alternatives showed lower environmental impact than the existing system, and the urine separation system the lowest. Bergsjön results were more difficult to interpret. Energy consumption was lowest for the existing system, whereas air emissions were lower for the alternatives. Water emissions increased for some parameters and decreased for others. Phosphorous recovery was high for all three alternatives, whereas there was virtually no nitrogen recovery until urine separation was introduced. 相似文献
13.
Recirculation of the leachate in the acidogenic reactor was proposed to enhance anaerobic digestion of food waste in the hybrid anaerobic solid–liquid (HASL) system. Recirculation of the leachate in the acidogenic reactor provided better conditions for extraction of organic matter from the treated food waste and buffering capacity to prevent excessive acidification in the acidogenic reactor. It ensured faster supply of nutrients in the methanogenic reactor in experiment. The highest dissolved COD and VFA concentrations in the leachate from the acidogenic reactor were reached for shorter time and were 16,670 mg/l and 9450 mg/l in control and 18,614 mg/l and 11,094 mg/l in experiment, respectively. Recycling of the leachate in the acidogenic reactor intensified anaerobic digestion of food waste and diminished time needed to produce the same quantity of methane by 40% in comparison with anaerobic digestion of food waste without recirculation. 相似文献
14.
María Jos Cuetos Xiomar Gmez Marta Otero Antonio Morn 《Biochemical Engineering Journal》2008,40(1):99-106
Mesophilic anaerobic digestion of slaughterhouse waste (SHW) and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been evaluated. These processes were carried out in a laboratory plant semi-continuously operated and two set-ups were run. The first set-up, with a hydraulic retention time (HRT) of 25 days and organic loading rate (OLR) of 1.70 kg VS m−3 day−1 for digestion, and 3.70 kg VS m−3 day−1 for co-digestion, was not successful. The second set-up was initiated with an HRT of 50 days and an OLR of 0.9 kg VS m−3 day−1 for digestion and 1.85 kg VS m−3 day−1 for co-digestion. Under these conditions, once the sludge had been acclimated to a medium with a high fat and ammonia content, it was possible to decrease the HRT while progressively increasing the OLR to the values used in the first set-up until an HRT of 25 days and OLRs of 1.70 and 3.70 kg VS m−3 day−1, for digestion and co-digestion, respectively (the same conditions of the digesters failures previously). These digesters showed a highly stable performance, volatile fatty acids (VFAs) were not detected and long chain fatty acids (LCFAs) were undetected or only trace levels were measured in the analyzed effluent. Fat removal reached values of up to 83%. Anaerobic digestion was thus found to be a suitable technology for efficiently treating lipid and protein waste. 相似文献
15.
The effect of the solid content on anaerobic digestion of meat and bone meal (MBM) was investigated in batch reactors at MBM solid contents of 1%, 2%, 5% and 10%. There was no significant difference in the specific methane (CH4) production potential with respect to the total volatile MBM solids (TVS) applied at these solid contents, which ranged from 351 to 381 ml CH4/g TVS. However, the highest CH4 yield with respect to the removed volatile MBM solids (RVS) was 482 ml CH4/g RVS at the MBM solid content of 5%; the CH4 yields were 384–448 ml CH4/g RVS at the other MBM solid contents. The lag time of CH4 production rose with the increase in the solid content. The longer lag time at MBM solid contents of 5% and 10% was due to inhibition caused by high concentrations of volatile fatty acids (VFAs) and free ammonia in the reactors, but the inhibition was reversible. The production of VFAs during the digestion varied with solid contents: at the solid content of 1%, only acetic acid was detected; at 2%, both acetic and propionic acids were detected; and at 5% and 10%, acetic, propionic, butyric and valeric acids were detected. After 93-day digestion, the volatile MBM solid reduction was 92%, 91%, 79% and 80% at MBM solid contents of 1%, 2%, 5% and 10%, respectively. 相似文献
16.
Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270-300 LCH4 kg−1COD) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 gCOD kg−1, a clear inhibitory process was monitored. Despite the reported severe inhibition, related to lipid content, the system was able to recover activity and successfully degrade the substrate. Furthermore, 16SrRNA gene-based DGGE results showed an enrichment of specialized microbial populations, such as β-oxidizing/proteolitic bacteria (Syntrophomonas sp., Coprothermobacter sp. and Anaerobaculum sp.), and syntrophic methanogens (Methanosarcina sp.). Consequently, the lipid concentration of substrate and the structure of the microbial community are the main limiting factors for a successful anaerobic treatment of fresh slaughterhouse waste. 相似文献
17.
Ronan Le HyaricCaroline Chardin Hassen BenbelkacemJulien Bollon Rémy BayardRenaud Escudié Pierre Buffière 《Bioresource technology》2011,102(2):822-827
The objective of this study was to evaluate the influence of substrate concentration and moisture content on the specific methanogenic activity (SMA) of a fresh dry mesophilic digestate from a municipal solid waste digester plant. For this purpose, SMA tests were performed under mesophilic conditions into glass bottles of 500 mL volume used as batch reactors, during a period of 20-25 days. Propionate was used as substrate at concentrations ranging from 1 to 10 gCOD/kg. Four moisture contents were studied: 65%, 75%, 80% and 82%. Experimental results showed that propionate concentration and moisture content strongly influenced the SMA. The highest SMA was observed at a substrate concentration of 10 gCOD/kg (11.3 mgCOD gVS−1 d−1 for the second dose of propionate) and at a moisture content of 82% (7.8 mgCOD gVS−1 d−1 for the second dose of propionate, at a concentration of 5 gCOD/kg). SMA was found to decrease linearly when decreasing the moisture content. 相似文献
18.
Chalita Liamsanguan Shabbir H. Gheewala 《The International Journal of Life Cycle Assessment》2007,12(7):529-536
Background, Aims and Scope During the combustion of municipal solid waste (MSW), energy is produced which can be utilized to generate electricity. However,
electricity production from incineration has to be evaluated from the point view of the environmental performance. In this
study, environmental impacts of electricity production from waste incineration plant in Thailand are compared with those from
Thai conventional power plants.
Methods The evaluation is based on a life cycle perspective using life cycle assessment (LCA) as the evaluation tool. Since MSW incineration
provides two services, viz., waste management and electricity production, the conventional power production system is expanded
to include landfilling without energy recovery, which is the most commonly used waste management system in Thailand, to provide
the equivalent function of waste management.
Results The study shows that the incineration performs better than conventional power plants vis-à-vis global warming and photochemical
ozone formation, but not for acidification and nutrient enrichment.
Discussion There are some aspects which may influence this result. If landfilling with gas collection and flaring systems is included
in the analysis along with conventional power production instead of landfilling without energy recovery, the expanded system
could become more favorable than the incineration in the global warming point of view. In addition, if the installation of
deNOx process is employed in the MSW incineration process, nitrogen dioxide can be reduced with a consequent reduction of acidification
and nutrient enrichment potentials. However, the conventional power plants still have lower acidification and nutrient enrichment
potentials.
Conclusions The study shows that incineration could not play the major role for electricity production, but in addition to being a waste
management option, could be considered as a complement to conventional power production. To promote incineration as a benign
waste management option, appropriate deNOx and dioxin removal processes should be provided. Separation of high moisture content waste fractions from the waste to be
incinerated and improvement of the operation efficiency of the incineration plant must be considered to improve the environmental
performance of MSW incineration.
Recommendations This study provides an overall picture and impacts, and hence, can support a decision-making process for implementation of
MSW incineration. The results obtained in this study could provide valuable information to implement incineration. But it
should be noted that the results show the characteristics only from some viewpoints.
Outlook Further analysis is required to evaluate the electricity production of the incineration plant from other environmental aspects
such as toxicity and land-use. 相似文献
19.
Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance 总被引:1,自引:0,他引:1
Charles J. Banks Michael ChesshireSonia Heaven Rebecca Arnold 《Bioresource technology》2011,102(2):612-620
An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass balance accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive energy balance for the same period showed that for each tonne of input material the potential recoverable energy was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne−1 VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne−1. This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed. 相似文献
20.
High rate anaerobic digestion of a petrochemical wastewater using biomass support particles 总被引:6,自引:0,他引:6
Anaerobic digestion of wastewater from a dimethyl terephthalate plant was studied in continuously stirred tank reactors with plastic net biomass support particles (BSP) at a level of 20% (v/v). The experimental results showed that the BSP system could treat the wastewater at a hydraulic retention time as low as 1.5 d, organic loading as high as 20 kg COD/m3/d and at acidic feed pH as low as 4.5 with 95% COD reduction and biogas production of about 8l/l/d, while the control system without support particles could not treat the wastewater above a 5-d hydraulic retention time, 5 kg COD/m3/d organic loading and a feed pH of 6.0. Thus, augmentation of BSP upgraded the performance of the conventional suspended growth system to an equivalent level to advanced reactors. 相似文献