共查询到20条相似文献,搜索用时 15 毫秒
1.
Wastewaters from textile processing and dye-stuff manufacture industries contain substantial amounts of salts in addition to azo dye residues. To examine salinity effects on dye-degrading bacteria, a study was carried out with four azo dyes in the presence of varying concentrations of NaCl (0-100 g l(-1)) with a previously isolated bacterium, Shewanella putrefaciens strain AS96. Under static, low oxygen conditions, the bacterium decolorized 100 mg dye l(-1) at salt concentrations up to 60 g NaCl l(-1). There was an inverse relationship between the velocity of the decolorization reaction and salt concentration over the range between 5 and 60 g NaCl l(-1) and at dye concentrations between 100 and 500 mg l(-1). The addition of either glucose (C source) or NH(4)NO(3) (N source) to the medium strongly inhibited the decolorization process, while yeast extract (4 g l(-1)) and Ca(H(2)PO(4))(2).H(2)O (1 g l(-1)) both enhanced decolorization rates. High-performance liquid chromatography analysis demonstrated the presence of 1-amino-2-naphthol, sulfanilic acid and nitroaniline as the major metabolic products of the azo dyes, which could be further degraded by a shift to aerobic conditions. These findings show that Shewanella could be effective for the treatment of dye-containing industrial effluents containing high concentrations of salt. 相似文献
2.
Effects of an electric field and zero valent iron on anaerobic treatment of azo dye wastewater and microbial community structures 总被引:2,自引:0,他引:2
A zero valent iron (ZVI) bed with a pair of electrodes was packed in an anaerobic reactor aiming at enhancing treatment of azo dye wastewater. The experiments were carried out in three reactors operated in parallel: an electric field enhanced ZVI-anaerobic reactor (R1), a ZVI-anaerobic reactor (R2) and a common anaerobic reactor (R3). R1 presented the highest performance in removal of COD and color. Raising voltage in R1 further improved its performance. Scanning electron microscopy images displayed that the structure of granular sludge from R1 was intact after being fed with the high dye concentration, while that of R3 was broken. Fluorescence in situ hybridization analysis indicated that the abundance of methanogens in R1 was significantly greater than that in the other two reactors. Denaturing gradient gel electrophoresis showed that the coupling of electric field and ZVI increased the diversity of microbial community and especially enhanced bacterial strains responsible for decolorization. 相似文献
3.
Guangfei Liu Jiti ZhouJing Wang Mi ZhouHong Lu Ruofei Jin 《Bioresource technology》2009,100(11):2791-2795
This study demonstrated the effective application of intracellular azoreductase in mediated decolorization of azo dyes. Using the quinone reductase activity of overexpressed azoreductase AZR and quinone redox mediators, the decolorization performance of the recombinant strain Escherichia coli YB was significantly enhanced. In the presence of 0.2 mM lawsone, 75% acid red 27 (1 mM) was decolorized by E. coli YB in only 2 h, which was the highest bacterial decolorization rate ever reported. Compared to lawsone, menadione was a less effective redox mediator. Glucose was found to be the best carbon source for mediated decolorization by E. coli YB. The recombinant strain could complete four rounds of mediated decolorization repeatedly in 12 h. In addition, a 10-min pre-incubation of E. coli JM109 and activated sludge with 2-methylhydroquinone resulted in great improvement of mediated decolorization performance, which may be applied in practical treatment. 相似文献
4.
Hao J Song F Huang F Yang C Zhang Z Zheng Y Tian X 《Journal of industrial microbiology & biotechnology》2007,34(3):233-240
The effect of various carbon and nitrogen sources on the production of laccase by newly isolated deuteromycete Pestalotiopsis sp. was tested under liquid-state fermentation. Twenty grams per liter of glucose and 10 g l−1 ammonium tartrate were found to be the optimized concentrations of carbon and nitrogen sources, respectively. The influence
of different inducers and inhibitors on the laccase production was also examined. Adding the Cu up to optimum concentration
of 2.0 mM in medium (include 20 g l−1 glucose and 10 g l−1 ammonium tartrate), the highest laccase activity of 32.7 ± 1.7 U ml−l was achieved. Cu had to be supplemented after 2 days of growth for its maximal effect, an addition after 6 days of growth,
during which laccase activity was dominantly formed, resulted in distinctly reduced laccase activity. In addition, Direct
Fast Blue B2RL can be effectively decolorized by crude laccase, the decolorization percentage of which was 88.0 ± 3.2% at
pH 4.0 within 12 h. The results suggest that Pestalotiopsis sp. is a high potential producer of the industrially important enzyme laccase. 相似文献
5.
The accelerating effect of quinones has been studied in the bio-decolorization processes, but there are no literatures about
the incorporation bio-treatment technology of the bromoamine acid (BA) wastewater and azo dyes wastewaters under high-salt
conditions (NaCl, 15%, w/w). Here we described the BA wastewater as a redox mediator in the bio-decolorization of azo dye
wastewaters. Decolorization of azo dyes was carried out experimentally using the salt-tolerant bacteria under the BA wastewater
and high-salt conditions. The BA wastewater used as a redox mediator was able to increase the decolorization rate of wastewater
containing azo dyes. The effects of various operating conditions such as dissolved oxygen, temperature, and pH on microbial
decolorization were investigated experimentally. At the same time, BA was tested to assess the effects on the change of the
Oxidation–Reduction Potential (ORP) values during the decolorization processes. The experiments explored a great improvement
of the redox mediator application and the new bio-treatment concept. 相似文献
6.
The combined effect of phenanthrene and Cr(VI) on soil microbial activity, community composition and on the efficiency of
bioremediation processes has been studied. Biometer flask systems and soil microcosm systems contaminated with 2,000 mg of
phenanthrene per kg of dry soil and different Cr(VI) concentrations were investigated. Temperature, soil moisture and oxygen
availability were controlled to support bioremediation. Cr(VI) inhibited the phenanthrene mineralization (CO2 production) and cultivable PAH degrading bacteria at levels of 500–2,600 mg kg−1. In the bioremediation experiments in soil microcosms the degradation of phenanthrene, the dehydrogenase activity and the
increase in PAH degrading bacteria counts were retarded by the presence of Cr(VI) at all studied concentrations (25, 50 and
100 mg kg−1). These negative effects did not show a correlation with Cr(VI) concentration. Whereas the presence of Cr(VI) had a negative
effect on the phenanthrene elimination rate, co-contamination with phenanthrene reduced the residual Cr(VI) concentration
in the water exchangeable Cr(VI) fraction (WEF) in comparison with the soil microcosm contaminated only with Cr(VI). Clear
differences were found between the denaturing gradient gel electrophoresis (DGGE) patterns of each soil microcosm, showing
that the presence of different Cr(VI) concentrations did modulate the community response to phenanthrene and caused perdurable
changes in the structure of the microbial soil community. 相似文献
7.
We found alpha-glucosidase inhibitory (α-GI) effect of metal ions and their complexes which showed the high blood glucose lowering effect in diabetic model animals. The Cu(II) ion and its complexes showed strong α-GI activity greater than clinically used acarbose in in vitro studies. Furthermore, in in vivo experiments, α-GI action was newly discovered in normal ddy mice. These results suggested that one of action mechanisms of the anti-diabetic metal ions and complexes is related to the α-GI effects. 相似文献
8.
Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials 总被引:3,自引:0,他引:3
Four materials, carbon felt cube (CFC), granular graphite (GG), granular activated carbon (GAC) and granular semicoke (GS) were tested as packed anodic materials to seek a potentially practical material for microbial fuel cells (MFCs). The microbial community and its correlation with the electricity generation performance of MFCs were explored. The maximum power density was found in GAC, followed by CFC, GG and GS. In GAC and CFC packed MFCs, Geobacter was the dominating genus, while Azospira was the most populous group in GG. Results further indicated that GAC was the most favorable for Geobacter adherence and growth, and the maximum power densities had positive correlation with the total biomass and the relative abundance of Geobacter, but without apparent correlation with the microbial diversity. Due to the low content of Geobacter in GS, power generated in this system may be attributed to other microorganisms such as Synergistes, Bacteroidetes and Castellaniella. 相似文献
9.
Different microfiltration membrane (MFM), proton exchange membrane (PEM) and ultrafiltration membranes (UFMs) with different molecular cutoff weights of 1 K (UFM-1K), 5 K (UFM-5K) and 10 K (UFM-10K) were incorporated into air-cathode single-chamber microbial fuel cells (MFCs) which were explored for simultaneous azo dye decolorization and electricity generation to investigate the effect of membrane on the performance of the MFC. Batch test results showed that the MFC with an UFM-1K produced the highest power density of 324 mW/m2 coupled with an enhanced coulombic efficiency compared to MFM. The MFC with UMF-10K achieved the fastest decolorization rate (4.77 mg/L h), followed by MFM (3.61 mg/L h), UFM-5K (2.38 mg/L h), UFM-1K (2.02 mg/L h) and PEM (1.72 mg/L h). These results demonstrated the possibility of using various membranes in the system described here, and showed that UFM-1K was the best one based on the consideration of both cost and performance. 相似文献
10.
Application of biocathode in microbial fuel cells: cell performance and microbial community 总被引:2,自引:0,他引:2
Chen GW Choi SJ Lee TH Lee GY Cha JH Kim CW 《Applied microbiology and biotechnology》2008,79(3):379-388
Instead of the utilization of artificial redox mediators or other catalysts, a biocathode has been applied in a two-chamber microbial fuel cell in this study, and the cell performance and microbial community were analyzed. After a 2-month startup, the microorganisms of each compartment in microbial fuel cell were well developed, and the output of microbial fuel cell increased and became stable gradually, in terms of electricity generation. At 20 ml/min flow rate of the cathodic influent, the maximum power density reached 19.53 W/m3, while the corresponding current and cell voltage were 15.36 mA and 223 mV at an external resistor of 14.9 Omega, respectively. With the development of microorganisms in both compartments, the internal resistance decreased from initial 40.2 to 14.0 Omega, too. Microbial community analysis demonstrated that five major groups of the clones were categorized among those 26 clone types derived from the cathode microorganisms. Betaproteobacteria was the most abundant division with 50.0% (37 of 74) of the sequenced clones in the cathode compartment, followed by 21.6% (16 of 74) Bacteroidetes, 9.5% (7 of 74) Alphaproteobacteria, 8.1% (6 of 74) Chlorobi, 4.1% (3 of 74) Deltaproteobacteria, 4.1% (3 of 74) Actinobacteria, and 2.6% (2 of 74) Gammaproteobacteria. 相似文献
11.
【目的】比较不同营养条件及挂膜方式下生物膜法对氨氮污染水体的净化效果及其功能微生物群落结构。【方法】设置空白(Blank)、自然成膜(Raw)、预附脱氮菌强化挂膜(PCC)3组生物膜反应器,利用末端限制性片段长度多态性(T-RFLP)技术和非度量多维标度(NMDS)分析方法对生物膜反应器转化氨氮过程中微生物群落结构及其演替过程进行动态解析。【结果】在C/N=1:1时,除PCC在起始阶段短暂具有较高的氨氮脱除效率外,Blank、Raw和PCC最终均表现出较低的氨氮转化效率(10%-20%)。改变C/N=2:1后,Raw和PCC对人工合成污水中NH4+-N的转化率均提高至95%以上,而且Raw与PCC的群落结构在C/N=2:1时具有较高的相似性,优势菌群主要为γ-变形菌纲(Gammaproteobacteria)、放线菌纲(Actinobacteria)和硝化螺菌纲(Nitrospira)。【结论】C/N是影响生物膜反应器氨氮去除效果及驱动生物膜反应器中细菌群落结构发生改变的重要因子。 相似文献
12.
The reaction of metal ions with nucleic acids can lead to a variety of dramatic effects on nucleic acid structure, e.g., crosslinking
of the polymer strands, degradation to oligomers and monomers, stabilization or destabilization, and the mispairing of bases.
These effects have important implications for genetic information transfer. Metal ions are involved in many aspects of this
transfer; we are presently concerned with the effect of metal ions on the orientation of the active site of RNA polymerase.
Many of the effects of metal ions on nucleic acid structure involve changes in the conformation of the macromolecules. We
have found that conditions that have been used to convert B DNA to Z DNA lead to at least two other conformational changes,
and phase diagrams delineate the realms of stability of each of the forms. We have carried out a number of studies that demonstrate
that the conversion of B to Z DNA is very closely correlated with a substantial decrease in the ability of the DNA to act
as a template for RNA synthesis.
A portion of this paper has been taken from another paper on “Changes of Biological Significance Induced by Metal Ions in
the Structure of Nucleic Acids,” published in Annali dell' lstituto Superiore di Sanita. 相似文献
13.
Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. 相似文献
14.
Wojciech Bal Magdalena Sokołowska Ewa Kurowska Peter Faller 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Serum albumin is the most abundant protein in the blood and cerebrospinal fluid and plays a fundamental role in the distribution of essential transition metal ions in the human body. Human serum albumin (HSA) is an important physiological transporter of the essential metal ions Cu2 +, and Zn2 + in the bloodstream. Its binding of metals like Ni2 +, Co2 +, or Cd2 + can occur in vivo, but is only of toxicological relevance. Moreover, HSA is one of the main targets and hence most studied binding protein for metallodrugs based on complexes with Au, Pt and V.Scope of Review
We discuss i) the four metal-binding sites so far described on HSA, their localization and metal preference, ii) the binding of the metal ions mentioned above, i.e. their stability constants and association/dissociation rates, their coordination chemistry and their selectivity versus the four binding sites iii) the methodology applied to study issues of items i and ii and iv) oligopeptide models of the N-terminal binding site.Major Conclusions
Albumin has four partially selective metal binding sites with well-defined metal preferences. It is an important regulator of the blood transport of physiological Cu(II) and Zn(II) and toxic Ni(II) and Cd(II). It is also an important target for metal-based drugs containing Pt(II), V(IV)O, and Au(I).General Significance
The thorough understanding of metal binding properties of serum albumin, including the competition of various metal ions for specific binding sites is important for biomedical issues, such as new disease markers and design of metal-based drugs. This article is part of a Special Issue entitled Serum Albumin. 相似文献15.
Electricity generation from readily biodegradable organic substrates accompanied by decolorization of azo dye was investigated using a microfiltration membrane air-cathode single-chamber microbial fuel cell (MFC). Batch experiment results showed that accelerated decolorization of active brilliant red X-3B (ABRX3) was achieved in the MFC as compared to traditional anaerobic technology. Biodegradation was the dominant mechanism of the dye removal, and glucose was the optimal co-substrate for ABRX3 decolorization, while acetate was the worst one. Confectionery wastewater (CW) was also shown to be a good co-substrate for ABRX3 decolorization and a cheap fuel source for electricity generation in the MFC. Low resistance was more favorable for dye decolorization than high resistance. Suspended sludge (SS) should be retained in the MFC for accelerated decolorization of ABRX3. Electricity generation was not significantly affected by the ABRX3 at 300 mg/L, while higher concentrations inhibited electricity generation. However, voltage can be recovered to the original level after replacement with anodic medium not containing azo dye. 相似文献
16.
正肠道菌群与多种疾病密切相关,从消化道疾病(如炎症性肠病)、心脑血管疾病(如动脉粥样硬化)到代谢类疾病(如II型糖尿病)和许多免疫性疾病(如风湿性关节炎),肠道菌群研究为诸多疾病研究和防治开辟了新的方向[1-3]。在肠道菌群研究领域,模型动物应用和实验结果的动物实验验证非常重要,本刊2016年第7期刊登的姬玉娇、孔祥峰等的论文"高、低营养水平饲粮对环江香猪结肠菌群结构及代谢物的影响"[4],通过对高、 相似文献
17.
18.
Metal ions are of significance in various pathological and physiological processes. As such, it is crucial to monitor their levels in organisms. Two-photon (TP) and near-infrared (NIR) fluorescence imaging has been utilized to monitor metal ions because of minimal background interference, deeper tissue depth penetration, lower tissue self-absorption, and reduced photodamage. In this review, we briefly summarize recent progress from 2020 to 2022 of TP/NIR organic fluorescent probes and inorganic sensors in the detection of metal ions. Additionally, we present an outlook for the development of TP/NIR probes for bio-imaging, diagnosis of diseases, imaging-guided therapy, and activatable phototherapy. 相似文献
19.
The ability of hydrogenases isolated from Thiocapsa roseopersicina and Lamprobacter modestohalophilus to reduce metal ions and oxidize metals has been studied. Hydrogenases from both phototrophic bacteria oxidized metallic Fe, Cd, Zn and Ni into their ionic forms with simultaneous evolution of molecular hydrogen. The metal oxidation rate decreased in the series Zn>Fe>Cd>Ni and depended on the pH. The presence of methyl viologen in the reaction system accelerated this process. T. roseopersicina and L. modestohalophilus cells and their hydrogenases reduced Ni(II), Pt(IV), Pd(II) or Ru(III) to their metallic forms under H2 atmosphere. These results suggest that metals or metal ions can serve as electron donors or acceptors for hydrogenases from phototrophic bacteria. 相似文献
20.
Low concentrations of metals of the first row transition series, Zn2+, Co2+, Mn2+, Ni2+, Cu2+ and Fe2+, and to a lesser extent the group IIa ions, particularly Mg2+, influenced the interaction of firefly luciferase [Photinus luciferin:oxygen 4-oxidoreductase (decarboxylating, ATP-hydrolysing), EC 1.13.12.7] with a number of triazine dyes. For example Cu2+ promoted the binding of luciferase to Cibacron Brilliant Blue (BR-II) and Cibacron Blue F3GA a dichloro and monochloro triazine dye, respectively. On the other hand Zn2+ prevented dye inactivation and even enhanced the enzyme activity. Specificity was observed in the interference of different metals interacting with different dye-protein. This is made use of in triazine dye affinity chromatography. 相似文献