首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents the comparison for reusability and leakage between entrapped and covalently bonded laccase and their performances towards the selective oxidation of glycerol. The reusability of immobilized laccase enzyme was studied by reacting a batch of immobilized laccase with ABTS for 15 cycles. The investigation of the leakage of immobilized laccase was carried out by storing the immobilized laccase in acetate buffer solution for 32 days. The data show that the retained enzyme activities of entrapped and covalently bonded enzyme after being reused for eight cycles were well above 60% and the leakages after storing for a month in the acetate buffer at 4?°C were well below 15%. The entrapped laccase coupled with TEMPO was found to perform better and gave a two-fold higher yield of glyceraldehyde and glyceric acid in the selective oxidation of glycerol compared to covalently bonded laccase. Hence, physical entrapment of laccase would be a suitable immobilization method in the laccase-mediated selective oxidation of glycerol.  相似文献   

2.
The primary hydroxyl groups in potato starch were selectively oxidized to the corresponding aldehyde and carboxylic acid functionalities by mediators like TEMPO, using laccase from fungi as catalytic oxidant and oxygen as the primary oxidant. Oxidized starch products with degree of substitution (DSCHO ranging from 0.16 to 16.4/100AGU and DSCOOH from 0.01 to 3.71 carboxyl groups/100AGU) were obtained with mediator facilitated enzymatic oxidation. Maximum conversion of the primary alcohol group was obtained at a pH of 5, with TEMPO as mediator, under oxygen bubbling and two step administration of Trametes versicolor laccase (200 + 200 nkat/g of starch). The oxidized products were characterised by IR spectroscopy, XRD and thermal studies. In the oxidized samples, the larger starch granules exhibited cracks and fractures in comparison to the smaller granules which were relatively unaffected, as observed from the microstructural studies.  相似文献   

3.
Several fungal laccases have been compared for the oxidation of a nonphenolic lignin dimer, 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propan-1,3-diol (I), and a phenolic lignin model compound, phenol red, in the presence of the redox mediators 1-hydroxybenzotriazole (1-HBT) or violuric acid. The oxidation rates of dimer I by the laccases were in the following order: Trametes villosa laccase (TvL) > Pycnoporus cinnabarinus laccase (PcL) > Botrytis cinerea laccase (BcL) > Myceliophthora thermophila laccase (MtL) in the presence of either 1-HBT or violuric acid. The order is the same if the laccases are used at the same molar concentration or added to the same activity (with ABTS [2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)] as a substrate). During the oxidation of dimer I, both 1-HBT and violuric acid were to some extent consumed. Their consumption rates also follow the above order of laccases, i.e., TvL > PcL > BcL > MtL. Violuric acid allowed TvL and PcL to oxidize dimer I much faster than 1-HBT, while BcL and violuric acid oxidized dimer I more slowly than BcL and 1-HBT. The oxidation rate of dimer I is dependent upon both kcat and the stability of the laccase. Both 1-HBT and violuric acid inactivated the laccases, violuric acid to a greater extent than 1-HBT. The presence of dimer I or phenol red in the reaction mixture slowed down this inactivation. The inactivation is mainly due to the reaction of the redox mediator free radical with the laccases. We did not find any relationship between the carbohydrate content of the laccases and their inactivation. When the redox potential of the laccases is in the range of 750 to 800 mV, i.e., above that of the redox mediator, it does not affect kcat and the oxidation rate of dimer I.  相似文献   

4.
Cross-linked Sepharose beads were treated with laccase–TEMPO system for oxidation of the primary alcohol groups on the sugar moieties. Optimal activation conditions using Trametes versicolor laccase were at pH 5 and 22 °C, giving an aldehyde content of 55 μmol g−1 Sepharose with 28 units g−1 of laccase and 12.5 mM TEMPO. The activated Sepharose was used for immobilization of trypsin as model protein. Highest degree of immobilization was obtained at pH 10.5 but the activity yield was only 31% of that loaded on the gel. The yield of gel bound trypsin activity was increased to 76% (corresponding to about 43 U g−1 Sepharose) when the immobilization was performed in the presence of trypsin inhibitor, benzamidine. The immobilization yields were comparable to that obtained on the matrix activated using sodium periodate (containing 72 μmol aldehyde per g Sepharose). Recycling and storage of the immobilized trypsin preparations showed high stability of the enzyme bound to laccase–TEMPO activated gel.  相似文献   

5.
The ability of Streptomyces ipomoea laccase to polymerize secoisolariciresinol lignan and technical lignins was assessed. The reactivity of S. ipomoea laccase was also compared to that of low redox fungal laccase from Melanocarpus albomyces using low molecular mass p-coumaric, ferulic and sinapic acid as well as natural (acetosyringone) and synthetic 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) mediators as substrates. Oxygen consumption measurement, MALDI-TOF MS and SEC were used to follow the enzymatic reactions at pH 7, 8, 9 and 10 at 30 °C and 50 °C. Polymerization of lignins and lignan by S. ipomoea laccase under alkaline reaction conditions was observed, and was enhanced in the presence of acetosyringone almost to the level obtained with M. albomyces laccase without mediator. Reactivities of the enzymes towards acetosyringone and TEMPO were similar, suggesting exploitation of the compounds and low redox laccase in lignin valorization under alkaline conditions. The results have scientific impact on basic research of laccases.  相似文献   

6.
Glycerol as a by-product of biodiesel production is an attractive precursor for producing d-glyceric acid. Here, we demonstrate the successful production of d-glyceric acid based on glycerol via glyceraldehyde in a two-step enzyme reaction with the FAD-dependent alditol oxidase from Streptomyces coelicolor A3(2). The hydrogen peroxide generated in the reaction can be used in detergent, food, and paper industry. In order to apply the alditol oxidase in industry, the enzyme was subjected to protein engineering. Different strategies were used to enhance the substrate specificity towards glycerol. Initial attempts based on rational protein design in the active site region were found unsuccessful to increase activity. However, through directed evolution, an alditol oxidase double mutant (V125M/A244T) with 1.5-fold improved activity for glycerol was found by screening 8,000 clones. Further improvement of activity was achieved by combinatorial experiments, which led to a quadruple mutant (V125M/A244T/V133M/G399R) with 2.4-fold higher specific activity towards glycerol compared to the wild-type enzyme. Through studying the effects of mutations created, we were able to understand the importance of certain amino acids in the structure of alditol oxidase, not only for conferring enzymatic structural stability but also with respect to their influence on oxidative activity.  相似文献   

7.
The kinetics of oxidation of d-erythrose and dL-glyceraldehyde by chromium (VI) and vanadium(V) in perchloric acid medium have been investigated spectrophotometrically. Each reaction was first-order with respect to [oxidant] and [substrate]. The reactions were catalysed by acid, but their dependence on acidity was complex. Sodium perchlorate accelerated the rate of each reaction. The oxidation rates follow the order glyceraldehyde > erythrose. The activation parameters were calculated and mechanisms consistent with the experimental observations are proposed.  相似文献   

8.
This paper presents the use of a membrane-integrated reactor system with recycling of laccase and mediator for azo dye decolorization. From initial screening of different laccases and mediators, Trametes versicolor laccase and syringaldehyde provided the best system for decolorization. Decolorization yields of 98, 88, 80 and 78% were obtained for Red FN-2BL, Red BWS, Remazol Blue RR and Blue 4BL, respectively. The reaction parameters were optimized and a membrane reactor was set up for dye decolorization in batch mode with reuse of the enzyme. Between 10 and 20 batches could be run with decolorization yields from 95 to 52% depending on the dye type. To study the possibility of reusing both enzyme and mediator, the reactor was run using 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) coupled to polyethylene glycol (PEG). Nine batches were run for the treatment of Remazol Blue RR, providing decolorization yields of 96-78%. Cost analysis of the processes showed that the costs of laccase/syringaldehyde or laccase/TEMPO were almost equal when running 20 batches, but the cost for the PEG-TEMPO was higher. However, the advantages associated with reuse of the mediator should motivate further development of the concept.  相似文献   

9.
Summary Iron(III) hydroxide oxide [Fe(OH)O] efficiently catalyzed the condensation of 25 MM dl-glyceraldehyde to ketohexoses at 25°C (pH 5–6). At 16 days the yields were sorbose (15.2%), fructose (12.9%), psicose (6.1%), tagatose (5.6%), and dendroketose (2.5%) with 19.6% of triose unreacted. Analysis at 96 days showed no decomposition of hexoses. Under these conditions Fe(OH)O also catalyzed the isomerization and rearrangement of glyceraldehyde to dihydroxyacetone and lactic acid, respectively. In these reactions, about 10% of the glyceraldehyde was oxidized to glyceric acid with concurrent reduction of the iron(III) to iron(II). The partial reduction of Fe(OH)O did not noticeably reduce its ability to catalyze hexose synthesis. The relationship of these results to prebiotic sugar synthesis is discussed.  相似文献   

10.
The decolourization and detoxification of the triarylmethane dye Malachite green (MG) by laccase from Trametes sp. were investigated. The laccase decolorized efficiently the dye down to 97% of 50 mg L?1 initial concentration of MG when only 0.1 U mL?1 of laccase was used in the reaction mixture. The effects of different physicochemical parameters were tested and optimal decolourization rates occurred at pH 6 and at temperatures between 50 and 60 °C. Decolourization of MG occurred in the presence of metal ions which could be found in textile industry effluent. 1-hydroxybenzotriazole (HBT) affected positively the decolourization of MG. The presence of some phenolic compounds namely ferulic, coumaric, gallic, and tannic acids was found to be inhibiting for the decolourization at a concentration of 10 mM.The effect of laccase inhibitors in the decolourization of MG was tested with l-cysteine, and ethylene diamine tetra-acetic acid (EDTA) at concentrations of 0.1, 1 and 10 mM. It was demonstrated that l-cysteine and EDTA inhibited the decolourization starting from 1 mM concentration. However, for NaCl a concentration of 100 mM was needed for the inhibition of laccase. The decolourization of MG resulted in the removal of its toxicity against Phanerochaete chrysosporium.The stability of the laccase toward temperature and HBT free radicals was also assessed during MG decolourization. It was shown that laccase was stable at 50 °C but in the presence of the laccase mediator HBT, the stability of the enzyme was severely affected resulting in a loss of 50% of the activity after 3 h incubation.  相似文献   

11.
We studied the metabolism of polycyclic aromatic hydrocarbons (PAHs) by using white rot fungi previously identified as organisms that metabolize polychlorinated biphenyls. Bran flakes medium, which has been shown to support production of high levels of laccase and manganese peroxidase, was used as the growth medium. Ten fungi grown for 5 days in this medium in the presence of anthracene, pyrene, or phenanthrene, each at a concentration of 5 μg/ml could metabolize these PAHs. We studied the oxidation of 10 PAHs by using laccase purified from Coriolopsis gallica. The reaction mixtures contained 20 μM PAH, 15% acetonitrile in 60 mM phosphate buffer (pH 6), 1 mM 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS), and 5 U of laccase. Laccase exhibited 91% of its maximum activity in the absence of acetonitrile. The following seven PAHs were oxidized by laccase: benzo[a]pyrene, 9-methylanthracene, 2-methylanthracene, anthracene, biphenylene, acenaphthene, and phenanthrene. There was no clear relationship between the ionization potential of the substrate and the first-order rate constant (k) for substrate loss in vitro in the presence of ABTS. The effects of mediating substrates were examined further by using anthracene as the substrate. Hydroxybenzotriazole (HBT) (1 mM) supported approximately one-half the anthracene oxidation rate (k = 2.4 h−1) that ABTS (1 mM) supported (k = 5.2 h−1), but 1 mM HBT plus 1 mM ABTS increased the oxidation rate ninefold compared with the oxidation rate in the presence of ABTS, to 45 h−1. Laccase purified from Pleurotus ostreatus had an activity similar to that of C. gallica laccase with HBT alone, with ABTS alone, and with 1 mM HBT plus 1 mM ABTS. Mass spectra of products obtained from oxidation of anthracene and acenaphthene revealed that the dione derivatives of these compounds were present.  相似文献   

12.
The oxidation of TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl radical) has been studied in the presence of recombinant laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) from Polyporus pinsitus (rPpL), Myceliophthora thermophila (rMtL), Coprinus cinereus (rCcL) and Rhizoctonia solani (rRsL) in buffer solution pH 4.5–7.3 and at 25 °C. At pH 5.5 the oxidation constant calculated from the initial rate of TEMPO oxidation was 1.7 × 104, 1.4 × 103, 7.8 × 102 and 5.2 × 102 M−1 s−1 for rPpL, rRsL, rCcL and rMtL, respectively. The maximal activity of rPpL-catalysed TEMPO oxidation was at pH 5.0. The pKa obtained in neutral pH range was 6.2. The reactivity of laccases is in a good agreement with laccases copper type I redox potential.

TEMPO oxidation rate increased 541 times in the presence of 10-(3-propylsulfonate) phenoxazine (PSPX). The model of synergistic TEMPO and PSPX oxidation was proposed. Experimentally obtained rate constants for rPpL-catalysed PSPX oxidation were in a good agreement with those calculated from the synergistic model, therefore confirming the feasibility of the model. The acceleration of TEMPO oxidation with high reactive laccase substrates opens new possibilities for TEMPO application as a mediator.  相似文献   


13.
Chemical modifications of galactomannans are applied to improve and/or modify their solubility, rheological and functional properties, but have limited specificity and are often difficult to control. Enzymatic reactions, catalyzed under mild process conditions, such as depolymerization, debranching and oxidation, represent a viable and eco-friendly alternative. In this study, we describe oxidation of guar galactomannan primary hydroxyl groups by a fungal laccase using the stable radical TEMPO as mediator. Four fungal laccases were investigated from: Trametes versicolor, Myceliophthora thermophila, Thielavia arenaria, Cerrena unicolor. The laccase from T. versicolor was found to efficiently oxidize TEMPO and to be free of mannanase side activity. Oxidation of galactomannan with this enzyme plus TEMPO brought about a ten-fold increase in viscosity of a guar galactomannan solution and altered its rheological profile, by converting a viscous polysaccharide solution into an elastic gel. This structural modification is presumably due to formation of inter-chain hemiacetalic bonds between newly generated carbonyl groups and free OH groups, yielding a cross-linked gel. These findings could be of practical importance, considering that polysaccharides with high viscosity, gelling and elastic properties can find interesting and novel applications as thickeners, viscosifiers and emulsion stabilizers in several industrial applications such as: personal care, oil operations, paper coating, paints, construction and mining.  相似文献   

14.
以自制的高活性漆酶为催化剂,考察漆酶催化苯甲醇制备苯甲醛的工艺条件(底物浓度、介质体系、溶剂体系、氢受体、酶的用量、通氧方式等)对氧化反应的影响。结果发现:优化反应条件为以2,2,6,6-四甲基哌啶-1-氧基(TEMPO)为介质体系且TEMPO与苯甲醇的摩尔比为1∶4、60 mmol/L的丙酮为氢受体、漆酶比酶活80 U/mL、60mmol/L的苯甲醇,反应体系通O20.5 h后密闭反应36 h,苯甲醛的产率达98%。  相似文献   

15.
Isothermal titration calorimetry (ITC) was used to study the oxidation of syringic acid by laccases from two different sources: Galerina sp. HC1 and Trametes versicolor. Total molar heat of reaction with both enzymes was similar (230 kJ/mol for Galerina laccase and 233 kJ/mol for Trametes laccase), and was independent of syringic acid concentration. The kinetic parameters of the reaction were calculated from the single injection assay by applying the nonlinear least squares fitting (NLSF) of experimental data to the Michaelis-Menten equation. Higher values for V(max) were obtained with Galerina sp. laccase, whereas K(m) values were comparable for the two enzymes.  相似文献   

16.
The influence of alcohol, 4-acetylamino,2,2,6,6′-tetramethylpiperidinyloxy (4-acetylamino-TEMPO) and laccase (from Trametes versicolor, TvL) concentration in the aerobic oxidation of furfuryl alcohol was investigated. Studies show that the Km for 4-acetylamino-TEMPO is around 6.3 mM (Vmax=0.18 mM min?1) using 6.6 U mL?1 of laccase and a furfuryl alcohol concentration of 140 mM. Under these optimized conditions, the reaction rate is still dependent on the concentration of enzyme in solution. Laccase can be reused, with a residual activity of around 25%. An important conclusion is that laccase is not stable in the presence of oxoammonium salts, presumably due to degradation via oxidation of essential amino acid residues or the glycosyl moieties on the periphery of the enzyme.  相似文献   

17.
The influence of alcohol, 4-acetylamino,2,2,6,6'-tetramethylpiperidinyloxy (4-acetylamino-TEMPO) and laccase (from Trametes versicolor, TvL) concentration in the aerobic oxidation of furfuryl alcohol was investigated. Studies show that the K m for 4-acetylamino-TEMPO is around 6.3 mM (V max=0.18 mM min-1) using 6.6 U mL-1 of laccase and a furfuryl alcohol concentration of 140 mM. Under these optimized conditions, the reaction rate is still dependent on the concentration of enzyme in solution. Laccase can be reused, with a residual activity of around 25%. An important conclusion is that laccase is not stable in the presence of oxoammonium salts, presumably due to degradation via oxidation of essential amino acid residues or the glycosyl moieties on the periphery of the enzyme.  相似文献   

18.
Curdlan from Agrobacterium sp. was oxidized using 2,2,6,6,-tetramethylpiperidine-1-oxyl radical (TEMPO)–NaBr–NaClO systems at pH 11. The effects of oxidation conditions on degrees of oxidation and polymerization of the products obtained were studied using SEC–MALLS, NMR and IR analyses. Different families of water-soluble β-(1,3)-polyglucuronic and β-(1,3)-polyglucoglucuronic acid sodium salts were quantitatively generated with a yield of 80% and without significant loss of their molecular weights.Given that β-(1,3)-polyglucuronic acids prepared from the regioselective oxidation of curdlan by the TEMPO–NaBr–NaClO systems regularly consist of the glucuronic acid repeating unit; they may open new biotechnological fields for the utilizations of water soluble forms of curdlan.  相似文献   

19.
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter with redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds.  相似文献   

20.
Several fungal laccases have been compared for the oxidation of a nonphenolic lignin dimer, 1-(3, 4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propan-1,3-diol (I), and a phenolic lignin model compound, phenol red, in the presence of the redox mediators 1-hydroxybenzotriazole (1-HBT) or violuric acid. The oxidation rates of dimer I by the laccases were in the following order: Trametes villosa laccase (TvL) > Pycnoporus cinnabarinus laccase (PcL) > Botrytis cinerea laccase (BcL) > Myceliophthora thermophila laccase (MtL) in the presence of either 1-HBT or violuric acid. The order is the same if the laccases are used at the same molar concentration or added to the same activity (with ABTS [2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)] as a substrate). During the oxidation of dimer I, both 1-HBT and violuric acid were to some extent consumed. Their consumption rates also follow the above order of laccases, i.e., TvL > PcL > BcL > MtL. Violuric acid allowed TvL and PcL to oxidize dimer I much faster than 1-HBT, while BcL and violuric acid oxidized dimer I more slowly than BcL and 1-HBT. The oxidation rate of dimer I is dependent upon both kcat and the stability of the laccase. Both 1-HBT and violuric acid inactivated the laccases, violuric acid to a greater extent than 1-HBT. The presence of dimer I or phenol red in the reaction mixture slowed down this inactivation. The inactivation is mainly due to the reaction of the redox mediator free radical with the laccases. We did not find any relationship between the carbohydrate content of the laccases and their inactivation. When the redox potential of the laccases is in the range of 750 to 800 mV, i.e., above that of the redox mediator, it does not affect kcat and the oxidation rate of dimer I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号