共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary By means of SDS-polyacrylamide gel electrophoresis the protein patterns of untreated, 0.5M and 1M KCl treated ribosomes of Drosophila melanogaster 4d larvae and adults are compared. 0.5M KCl treatment does not change the stage specific pattern (Fig. 1 b, c). 1 M KCl treatment removes 2 stage specific proteins from adult ribosomes (Fig. 1d, band No. 1 and 3). One protein found only in the adults is localized on the small ribosomal subunit and removed by 1 M KCl (band No. 3). The possible significance of these results is discussed.This work was supported by the Georges und Antoine Claraz-Schenkung. 相似文献
2.
Reverse-phase high-performance liquid chromatography has been explored as an approach for the separation of the proteins of the 30 S subunit of Escherichia coli ribosomes. The majority of these proteins are of similar molecular weight and isoelectric point, making separation by size exclusion or ion exchange difficult. With the use of an octadecasilyl silica column and a trifluoroacetic acid-acetonitrile solvent system, the 21 proteins of the 30 S subunit have been separated into 15 peaks. The yield of total protein recovered from the column was ≥85%. The proteins present in each peak have been identified by polyacrylamide gel electrophoretic analysis of the peaks as well as by comparison with the relative retention volumes of known purified 30 S proteins on the column. The results clearly show that this method is a powerful and rapid technique for the identification and purification of 30 S proteins. Analysis of [3H]puromycin-labeled 30 S subunit protein provides an illustrative example of its utility for affinity labeling studies. 相似文献
3.
Late cytoplasmic maturation of the small ribosomal subunit requires RIO proteins in Saccharomyces cerevisiae 下载免费PDF全文
Vanrobays E Gelugne JP Gleizes PE Caizergues-Ferrer M 《Molecular and cellular biology》2003,23(6):2083-2095
Numerous nonribosomal trans-acting factors involved in pre-rRNA processing have been characterized, but few of them are specifically required for the last cytoplasmic steps of 18S rRNA maturation. We have recently demonstrated that Rrp10p/Rio1p is such a factor. By BLAST analysis, we identified the product of a previously uncharacterized essential gene, YNL207W/RIO2, called Rio2p, that shares 43% sequence similarity with Rrp10p/Rio1p. Rio2p homologues were identified throughout the Archaea and metazoan species. We show that Rio2p is a cytoplasmic-nuclear protein and that its depletion blocks 18S rRNA production, leading to 20S pre-rRNA accumulation. In situ hybridization reveals that in Rio2p-depleted cells, 20S pre-rRNA localizes in the cytoplasm, demonstrating that its accumulation is not due to an export defect. We also show that both Rio1p and Rio2p accumulate in the nucleus of crm1-1 cells at the nonpermissive temperature. Nuclear as well as cytoplasmic Rio2p and Rio1p cosediment with pre-40S particles. These results strongly suggest that Rio2p and Rrp10p/Rio1p are shuttling proteins which associate with pre-40S particles in the nucleus and they are not necessary for export of the pre-40S complexes but are absolutely required for the cytoplasmic maturation of 20S pre-rRNA at site D, leading to mature 40S ribosomal subunits. 相似文献
4.
A proteomics approach to the identification of mammalian mitochondrial small subunit ribosomal proteins 总被引:6,自引:0,他引:6
Koc EC Burkhart W Blackburn K Moseley A Koc H Spremulli LL 《The Journal of biological chemistry》2000,275(42):32585-32591
Mammalian mitochondrial small subunit ribosomal proteins were separated by two-dimensional polyacrylamide gel electrophoresis. The proteins in six individual spots were subjected to in-gel tryptic digestion. Peptides were separated by capillary liquid chromatography, and the sequences of selected peptides were obtained by electrospray tandem mass spectrometry. The peptide sequences obtained were used to screen human expressed sequence tag data bases, and complete consensus cDNAs were assembled. Mammalian mitochondrial small subunit ribosomal proteins from six different classes of ribosomal proteins were identified. Only two of these proteins have significant sequence similarities to ribosomal proteins from prokaryotes. These proteins correspond to Escherichia coli S10 and S14. Homologs of two human mitochondrial proteins not found in prokaryotes were observed in the genomes of Drosophila melanogaster and Caenorhabditis elegans. A homolog of one of these proteins was observed in D. melanogaster but not in C. elegans, while a homolog of the other was present in C. elegans but not in D. melanogaster. A homolog of one of the ribosomal proteins not found in prokaryotes was tentatively identified in the yeast genome. This latter protein is the first reported example of a ribosomal protein that is shared by mitochondrial ribosomes from lower and higher eukaryotes that does not have a homolog in prokaryotes. 相似文献
5.
6.
7.
Mammalian mitochondrial translational initiation factor 3 (IF3(mt)) binds to the small subunit of the ribosome displacing the large subunit during the initiation of protein biosynthesis. About half of the proteins in mitochondrial ribosomes have homologs in bacteria while the remainder are unique to the mitochondrion. To obtain information on the ribosomal proteins located near the IF3(mt) binding site, cross-linking studies were carried out followed by identification of the cross-linked proteins by mass spectrometry. IF3(mt) cross-links to mammalian mitochondrial homologs of the bacterial ribosomal proteins S5, S9, S10, and S18-2 and to unique mitochondrial ribosomal proteins MRPS29, MRPS32, MRPS36 and PTCD3 (Pet309) which has now been identified as a small subunit ribosomal protein. IF3(mt) has extensions on both the N- and C-termini compared to the bacterial factors. Cross-linking of a truncated derivative lacking these extensions gives the same hits as the full length IF3(mt) except that no cross-links were observed to MRPS36. IF3 consists of two domains separated by a flexible linker. Cross-linking of the isolated N- and C-domains was observed to a range of ribosomal proteins particularly with the C-domain carrying the linker which showed significant cross-linking to several ribosomal proteins not found in prokaryotes. 相似文献
8.
9.
Recent crystal structures of the small ribosomal subunit have made it possible to examine the detailed energetics of codon recognition on the ribosome by computational methods. The binding of cognate and near-cognate anticodon stem loops to the ribosome decoding center, with mRNA containing the Phe UUU and UUC codons, are analyzed here using explicit solvent molecular dynamics simulations together with the linear interaction energy (LIE) method. The calculated binding free energies are in excellent agreement with experimental binding constants and reproduce the relative effects of mismatches in the first and second codon position versus a mismatch at the wobble position. The simulations further predict that the Leu2 anticodon stem loop is about 10 times more stable than the Ser stem loop in complex with the Phe UUU codon. It is also found that the ribosome significantly enhances the intrinsic stability differences of codon-anticodon complexes in aqueous solution. Structural analysis of the simulations confirms the previously suggested importance of the universally conserved nucleotides A1492, A1493, and G530 in the decoding process. 相似文献
10.
The European small subunit ribosomal RNA database 总被引:14,自引:5,他引:9
Van de Peer Y De Rijk P Wuyts J Winkelmans T De Wachter R 《Nucleic acids research》2000,28(1):175-176
The European database of the Small Subunit (SSU) Ribosomal RNA is a curated database that strives to collect all information about the primary and secondary structure of completely or nearly-completely sequenced rRNAs. Furthermore, the database compiles additional information such as literature references and taxonomic status of the organism the sequence was derived from. The database can be consulted via the WWW at URL http://rrna.uia.ac.be/ssu/. Through the WWW, sequences can be easily selected either one by one, by taxonomic group, or by a combination of both, and can be retrieved in different sequence and alignment formats. 相似文献
11.
Samuel P. Simons Thomas J. McLellan Richard P. Zaniewski Lillian M. Wondrack Timothy A. Subashi Zuoyu Xu Ing-Kae Wang Peter K. LeMotte Bruce A. Maguire 《Analytical biochemistry》2009,395(1):77-85
We have developed an affinity purification of the large ribosomal subunit from Deinococcus radiodurans that exploits its association with FLAG-tagged 30S subunits. Thus, capture is indirect so that no modification of the 50S is required and elution is achieved under mild conditions (low magnesium) that disrupt the association, avoiding the addition of competitor ligands or coelution of common contaminants. Efficient purification of highly pure 50S is achieved, and the chromatography simultaneously sorts the 50S into three classes according to their association status (unassociated, loosely associated, or tightly associated), improving homogeneity. 相似文献
12.
J M Neefs Y Van de Peer P De Rijk S Chapelle R De Wachter 《Nucleic acids research》1993,21(13):3025-3049
The database on small ribosomal subunit RNA structure contained 1804 nucleotide sequences on April 23, 1993. This number comprises 365 eukaryotic, 65 archaeal, 1260 bacterial, 30 plastidial, and 84 mitochondrial sequences. These are stored in the form of an alignment in order to facilitate the use of the database as input for comparative studies on higher-order structure and for reconstruction of phylogenetic trees. The elements of the postulated secondary structure for each molecule are indicated by special symbols. The database is available on-line directly from the authors by ftp and can also be obtained from the EMBL nucleotide sequence library by electronic mail, ftp, and on CD ROM disk. 相似文献
13.
The 30S subunit is composed of four structural domains, the body, platform, head, and penultimate/ultimate stems. The functional integrity of the 30S subunit is dependent upon appropriate assembly and precise orientation of all four domains. We examined 16S rRNA conformational changes during in vitro assembly using directed hydroxyl radical probing mediated by Fe(II)-derivatized ribosomal protein (r-protein) S8. R-protein S8 binds the central domain of 16S rRNA directly and independently and its iron derivatized substituents have been shown to mediate cleavage in three domains of 16S rRNA, thus making it an ideal probe to monitor multidomain orientation during assembly. Cleavages in minimal ribonucleoprotein (RNP) particles formed with Fe(II)-S8 and 16S rRNA alone were compared with that in the context of the fully assembled subunit. The minimal binding site of S8 at helix 21 exists in a structure similar to that observed in the mature subunit, in the absence of other r-proteins. However, the binding site of S8 at the junction of helices 25-26a, which is transcribed after helix 21, is cleaved with differing intensities in the presence and absence of other r-proteins. Also, assembly of the body helps establish an architecture approximating, but perhaps not identical, to the 30S subunit at helix 12 and the 5' terminus. Moreover, the assembly or orientation of the neck is dependent upon assembly of both the head and the body. Thus, a complex interrelationship is observed between assembly events of independent domains and the incorporation of primary binding proteins during 30S subunit formation. 相似文献
14.
Cavdar Koc E Burkhart W Blackburn K Moseley A Spremulli LL 《The Journal of biological chemistry》2001,276(22):19363-19374
Identification of all the protein components of the small subunit (28 S) of the mammalian mitochondrial ribosome has been achieved by carrying out proteolytic digestions of whole 28 S subunits followed by analysis of the resultant peptides by liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptide sequence information was used to search the human EST data bases and complete coding sequences of the proteins were assembled. The human mitochondrial ribosome has 29 distinct proteins in the small subunit. Fourteen of this group of proteins are homologs of the Escherichia coli 30 S ribosomal proteins S2, S5, S6, S7, S9, S10, S11, S12, S14, S15, S16, S17, S18, and S21. All of these proteins have homologs in Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae mitochondrial ribosomes. Surprisingly, three variants of ribosomal protein S18 are found in the mammalian and D. melanogaster mitochondrial ribosomes while C. elegans has two S18 homologs. The S18 homologs tend to be more closely related to chloroplast S18s than to prokaryotic S18s. No mitochondrial homologs to prokaryotic ribosomal proteins S1, S3, S4, S8, S13, S19, and S20 could be found in the peptides obtained from the whole 28 S subunit digests or by analysis of the available data bases. The remaining 15 proteins present in mammalian mitochondrial 28 S subunits (MRP-S22 through MRP-S36) are specific to mitochondrial ribosomes. Proteins in this group have no apparent homologs in bacterial, chloroplast, archaebacterial, or cytosolic ribosomes. All but two of these proteins have a clear homolog in D. melanogaster while all but three can be found in the genome of C. elegans. Five of the mitochondrial specific ribosomal proteins have homologs in S. cerevisiae. 相似文献
15.
The database on small ribosomal subunit RNA structure contains (June 1994) 2824 nucleotide sequences. All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which in turn is corroborated by the observation of compensating substitutions in the alignment. The complete database is made available to the scientific community through anonymous ftp on our server in Antwerp. A special effort was made to improve electronic retrieval and a program is supplied that allows to create different file formats. The database can also be obtained from the EMBL nucleotide sequence library. 相似文献
16.
About 8600 complete or nearly complete sequences are now available from the Antwerp database on small ribosomal subunit RNA. All these sequences are aligned with one another on the basis of the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Literature references, accession numbers and detailed taxonomic information are also compiled. The database can be consulted via the World Wide Web at URL http://rrna.uia.ac.be/ssu/ 相似文献
17.
Y Van de Peer E Robbrecht S de Hoog A Caers P De Rijk R De Wachter 《Nucleic acids research》1999,27(1):179-183
Over 11 500 complete or nearly complete sequences are now available from the Antwerp database on small subunit ribosomal RNA. All these sequences are aligned with one another on the basis of the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Literature references, accession numbers and taxonomic information are also compiled. The database can be consulted via the World Wide Web at URL http://rrna.uia.ac.be/ssu/ 相似文献
18.
The Antwerp database on small ribosomal subunit RNA offers over 4300 nucleotide sequences (August 1995). All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which in turn is corroborated by the observation of compensating substitutions in the alignment. Besides the primary and secondary structure information, literature references, accession numbers and detailed taxonomic information are also compiled. The complete database is made available to the scientific community through anonymous ftp and World Wide Web(WWW). 相似文献
19.
The Antwerp database on small ribosomal subunit RNA now offers more than 6000 nucleotide sequences (August 1996). All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Besides the primary and secondary structure information, literature references, accession numbers and detailed taxonomic information are also compiled. For ease of use, the complete database is made available to the scientific community via World Wide Web at URL http://rrna.uia.ac.be/ssu/ . 相似文献
20.
Jan Wuyts Yves Van de Peer Tina Winkelmans Rupert De Wachter 《Nucleic acids research》2002,30(1):183-185
The European database on SSU rRNA can be consulted via the World WideWeb at http://rrna.uia.ac.be/ssu/ and compiles all complete or nearly complete small subunit ribosomal RNA sequences. Sequences are provided in aligned format. The alignment takes into account the secondary structure information derived by comparative sequence analysis of thousands of sequences. Additional information such as literature references, taxonomy, secondary structure models and nucleotide variability maps, is also available. 相似文献