首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This minireview presents recent advances in our understanding of iron oxidation and homeostasis in acidophilic Bacteria and Archaea. These processes influence the flux of metals and nutrients in pristine and man-made acidic environments such as acid mine drainage and industrial bioleaching operations. Acidophiles are also being studied to understand life in extreme conditions and their role in the generation of biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acidophiles is best understood in the model organism Acidithiobacillus ferrooxidans. However, recent functional genomic analysis of acidophiles is leading to a deeper appreciation of the diversity of acidophilic iron-oxidizing pathways. Although it is too early to paint a detailed picture of the role played by lateral gene transfer in the evolution of iron oxidation, emerging evidence tends to support the view that iron oxidation arose independently more than once in evolution. Acidic environments are generally rich in soluble iron and extreme acidophiles (e.g. the Leptospirillum genus) have considerably fewer iron uptake systems compared with neutrophiles. However, some acidophiles have been shown to grow as high as pH 6 and, in the case of the Acidithiobacillus genus, to have multiple iron uptake systems. This could be an adaption allowing them to respond to different iron concentrations via the use of a multiplicity of different siderophores. Both Leptospirillum spp. and Acidithiobacillus spp. are predicted to synthesize the acid stable citrate siderophore for Fe(III) uptake. In addition, both groups have predicted receptors for siderophores produced by other microorganisms, suggesting that competition for iron occurs influencing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation and iron uptake in acidophiles, especially how the use of iron as an energy source is balanced with its need to take up iron for metabolism. It is anticipated that integrated and complex regulatory networks sensing different environmental signals, such as the energy source and/or the redox state of the cell as well as the oxygen availability, are involved.  相似文献   

2.
In Streptococcus faecalis (faecium), the cytoplasmic pH is regulated by proton extrusion via a proton translocating F1F0-ATPase; the level of this enzyme increases in response to cytoplasmic acidification (Kobayashi, H., Suzuki, T., and Unemoto, T. (1986) J. Biol. Chem. 261, 627-630). We describe here two novel acid-sensitive mutants, designated AS8 and AS17, that contain ATPase activity but fail to grow on acid media. Our data suggested that in mutant AS17, acidification of the cytoplasm stimulates synthesis of the F0 sector of the ATPase but not the F1 sector. The accumulation in the plasma membrane of F0 sectors devoid of F1 results in enhanced proton permeability, and as a consequence mutant AS17 is unable to regulate the cytoplasmic pH in acid media. The genetic defect may reside in a gene that regulates expression of the F1F0-ATPase. Mutant AS8 does not generate a proton motive force. Our results suggest that the F1F0-ATPase can hydrolyze ATP but fails to translocate protons due to a defect in one of the subunits of the F0 sector.  相似文献   

3.
A reduce uptake and retention of the mitochondria-specific membrane potential probe rhodamine 123 by feline sarcoma virus (FeSV)-transformed mink fibroblasts (64F3) has been detected. The decreased accumulation of rhodamine 123 by 64F3 mitochondria is not due to abnormal plasma membrane dye permeability, since after microinjection of the dye these cells are still unable to retain the dye at levels comparable to the untransformed parental cells, CCL 64. Nigericin, an ionophore that mediates an electrically neutral exchange of protons for potassium ions resulting the elimination of the pH gradient across the mitochondrial membrane and a compensatory increase in mitochondrial membrane potential with continued respiration, increases both the dye uptake and the retention time in transformed 64F3 cells. These results suggest that mitochondria in FeSV-transformed mink cells may have an abnormally low mitochondrial membrane potential accompanied by a relatively high pH gradient. Since anioic metabolites such as pyruvate and glutamate are accumulated by mitochondria in proportion to the delta pH across the mitochondrial membrane, the abnormal mitochondria described here may contribute to the abnormal metabolic state of FeSV-transformed cells.  相似文献   

4.
Acidophiles are ecologically and economically important group of microorganisms, which thrive in acidic natural (solfataric fields, sulfuric pools) as well as artificial man-made (areas associated with human activities such as mining of coal and metal ores) environments. They possess networked cellular adaptations to regulate pH inside the cell. Several extracellular enzymes from acidophiles are known to be functional at much lower pH than the cytoplasmic pH. Enzymes like amylases, proteases, ligases, cellulases, xylanases, α-glucosidases, endoglucanases, and esterases stable at low pH are known from various acidophilic microbes. The possibility of improving them by genetic engineering and directed evolution will further boost their industrial applications. Besides biocatalysts, other biomolecules such as plasmids, rusticynin, and maltose-binding protein have also been reported from acidophiles. Some strategies for circumventing the problems encountered in expressing genes encoding proteins from extreme acidophiles have been suggested. The investigations on the analysis of crystal structures of some acidophilic proteins have thrown light on their acid stability. Attempts are being made to use thermoacidophilic microbes for biofuel production from lignocellulosic biomass. The enzymes from acidophiles are mainly used in polymer degradation.  相似文献   

5.
Cytokines such as interleukin-3 (IL-3) promote the survival of hematopoietic cells through mechanisms that are not well characterized. Withdrawal of IL-3 from an IL-3-dependent pro-B cell line induced early stress-related events that preceded cell death by more than 40 h. Intracellular pH rose above pH 7.8, peaking 2-3 h post-IL-3 withdrawal, and induced a transient increase in mitochondrial membrane potential (Delta Psi(m)) detected using several different dyes. Similar events were observed following IL-7 withdrawal from a different dependent cell line. Bcl-2, Bax, and caspases were unrelated to these early events. Intracellular alkaline pH inhibited the mitochondrial import of ADP, which would limit ATP synthesis. Total cellular ATP sharply declined during this early period, presumably as a consequence of suppressed ADP import. This was followed by an increase in reduced pyridine nucleotides. The transient increase in Delta Psi(m) was blocked by oligomycin, an inhibitor of F(0)F(1-)ATPase that may have undergone reversal caused by the abnormal ADP-ATP balance within mitochondria. These findings suggest a novel sequence of early events following trophic factor withdrawal in which alkaline pH inhibits ADP import into mitochondria, reversing the F(0)F(1-)ATPase, which in turn consumes ATP and pumps out protons, raising Delta Psi(m).  相似文献   

6.
Charge translocation across the membrane coupled to transfer of the third electron in the reaction cycle of bovine cytochrome c oxidase (COX) has been studied. Flash-induced reduction of the peroxy intermediate (P) to the ferryl-oxo state (F) by tris-bipyridyl complex of Ru(II) in liposome-reconstituted COX is coupled to several phases of membrane potential generation that have been time-resolved with the use of an electrometric technique applied earlier in the studies of the ferryl-oxo-to-oxidized (F --> O) transition of the enzyme [Zaslavsky, D., et al. (1993) FEBS Lett. 336, 389-393]. As in the case of the F --> O transition, the electric response associated with photoreduction of P to F includes a rapid KCN-insensitive electrogenic phase with a tau of 40-50 microseconds (reduction of heme a by CuA) and a multiphasic slower part; this part is cyanide-sensitive and is assigned to vectorial transfer of protons coupled to reduction of oxygen intermediate in the binuclear center. The net KCN-sensitive phase of the response is approximately 4-fold more electrogenic than the rapid phase, which is similar to the characteristics of the F --> O electrogenic transition and is consistent with net transmembrane translocation of two protons per electron, including vectorial movement of both "chemical" and "pumped" protons. The protonic part of the P --> F electric response is faster than in the F --> O transition and can be deconvoluted into three exponential phases with tau values varying for different samples in the range of 0.25-0.33, 1-1.5, and 6-7.5 ms at pH 8. Of these three phases, the 1-1.5 ms component is the major one contributing 50-60%. The P --> F conversion induced by single electron photoreduction of the peroxy state as studied in this work is several times slower than the P --> F transition resolved during oxidation of the fully reduced oxidase by molecular oxygen. The role of the CuB redox state in controlling the rate of P --> F conversion of heme a3 is discussed.  相似文献   

7.
A salt-tolerant yeast Debaryomyces hansenii IFO 10939, which is able to grow at pH 10.0, was isolated and characterized. IFO 10939 had the ability of maintaining intracellular pH. The in vivo activation of plasma membrane ATPase was observed in cells grown at pH 6.2 during conditioning in buffer at pH 9.0. Alkalification of growth medium exhibited a significant increase in acetate and propionate production. The results suggested that the regulation of intracellular pH was involved in plasma membrane ATPase pumping protons out of the cells and weak acid formation for the source of the protons in cells growing at high pH. Received: 4 December 2001 / Accepted: 24 January 2002  相似文献   

8.
A wide range of microorganisms, the so-called acidophiles, inhabit acidic environments and grow optimally at pH values between 0 and 3. The intracellular pH of these organisms is, however, close to neutrality or slightly acidic. It is to be expected that enzymatic activities dedicated to extracellular functions would be adapted to the prevailing low pH of the environment (0-3), whereas intracellular enzymes would be optimally active at the near-neutral pH of the cytoplasm (4.6-7.0). The genes of several intracellular or cell-bound enzymes, a carboxylesterase and three alpha-glucosidases, from Ferroplasma acidiphilum, a cell wall-lacking acidophilic archaeon with a growth optimum at pH 1.7, were cloned and expressed in Escherichia coli, and their products purified and characterized. The Ferroplasmaalpha-glucosidases exhibited no sequence similarity to known glycosyl hydrolases. All enzymes functioned and were stable in vitro in the pH range 1.7-4.0, and had pH optima much lower than the mean intracellular pH of 5.6. This 'pH optimum anomaly' suggests the existence of yet-undetected cellular compartmentalization providing cytoplasmic pH patchiness and low pH environments for the enzymes we have analysed.  相似文献   

9.
N V Kumar  N R Kallenbach 《Biochemistry》1985,24(26):7658-7662
Hydrogen exchange of the individual amide protons of alanine-90 (F5), glutamine-91 (F6), serine-92 (F7), and histidine-93 (F8) residues in cyanometmyoglobin of sperm whale has been studied by 1H nuclear magnetic resonance spectroscopy at 360 MHz. The amide proton resonance of F5, F6, and F7 have been assigned by use of the selective nuclear Overhauser effect between the consecutive amide protons. At pH 6.8, and in the temperature range of 5-20 degrees C, these protons show a 10(4)-fold retardation compared to the rates in free peptides. Apparent activation enthalpies for hydrogen exchange of F5, F6, and F8 protons are 18.5 +/- 0.4, 9.5 +/- 0.3, and 18.5 +/- 0.3 kcal/mol, respectively. Some implications of these results on the nature of the opening processes involved in hydrogen exchange are considered.  相似文献   

10.
Abstract Buffering capacity and membrane conductance to H+ were measured in Enterococcus faecalis and Lactobacillus acidophilus by a pulse technique. The magnitude of these parameters varied between one species and another. Over the pH range studied, from pH 3.72 to 7.74, the acidophile Lactobacillus acidophilus showed higher values of buffering capacity and membrane H+ conductance than the neutrophile Enterococcus faecalis . These results support the idea that acidophiles have high cytoplasmic buffering capacity, which may allow them to resist changes in cytoplasmic pH.  相似文献   

11.
Cytochrome c oxidase (CytcO) is a membrane-bound enzyme, which catalyzes the reduction of di-oxygen to water and uses a major part of the free energy released in this reaction to pump protons across the membrane. In the Rhodobacter sphaeroides aa? CytcO all protons that are pumped across the membrane, as well as one half of the protons that are used for O? reduction, are transferred through one specific intraprotein proton pathway, which holds a highly conserved Glu286 residue. Key questions that need to be addressed in order to understand the function of CytcO at a molecular level are related to the timing of proton transfers from Glu286 to a "pump site" and the catalytic site, respectively. Here, we have investigated the temperature dependencies of the H/D kinetic-isotope effects of intramolecular proton-transfer reactions in the wild-type CytcO as well as in two structural CytcO variants, one in which proton uptake from solution is delayed and one in which proton pumping is uncoupled from O? reduction. These processes were studied for two specific reaction steps linked to transmembrane proton pumping, one that involves only proton transfer (peroxy-ferryl, P→F, transition) and one in which the same sequence of proton transfers is also linked to electron transfer to the catalytic site (ferryl-oxidized, F→O, transition). An analysis of these reactions in the framework of theory indicates that that the simpler, P→F reaction is rate-limited by proton transfer from Glu286 to the catalytic site. When the same proton-transfer events are also linked to electron transfer to the catalytic site (F→O), the proton-transfer reactions might well be gated by a protein structural change, which presumably ensures that the proton-pumping stoichiometry is maintained also in the presence of a transmembrane electrochemical gradient. Furthermore, the present study indicates that a careful analysis of the temperature dependence of the isotope effect should help us in gaining mechanistic insights about CytcO.  相似文献   

12.
pH and Na+ homeostasis in all cells requires Na+/H+ antiporters. The crystal structure, obtained at pH 4, of NhaA, the main antiporter of Escherichia coli, has provided general insights into an antiporter mechanism and its unique pH regulation. Here, we describe a general method to select various NhaA mutants from a library of randomly mutagenized NhaA. The selected mutants, A167P and F267C are described in detail. Both mutants are expressed in Escherichia coli EP432 cells at 70–95% of the wild type but grow on selective medium only at neutral pH, A167P on Li+ (0.1 M) and F267C on Na+ (0.6 M). Surprising for an electrogenic secondary transporter, and opposed to wild type NhaA, the rates of A167P and F267C are almost indifferent to membrane potential. Detailed kinetic analysis reveals that in both mutants the rate limiting step of the cation exchange cycle is changed from an electrogenic to an electroneutral reaction.  相似文献   

13.
T H Flowers  S T Williams 《Microbios》1978,18(73-74):223-228
The influence of pH on the specific growth rates of two acidophilic and two neutrophilic soil streptomycetes was studied. The acidophiles had maximum growth rates over a broad range from pH 4.5 to 5.5, while the neutrophiles had clearly defined optima at pH 7.0. Mycelium of neutrophiles was less tolerant of acidity than that of acidophiles; both showed decreased viability at pH levels below those which allowed growth. Spores of neutrophiles and acidophiles were equally tolerant of acidity and this may allow the former to survive in acid soils. Both spores and mycelium of acidophiles remained viable at pH levels above those allowing growth.  相似文献   

14.
Altered expression of the H+ ATPase in Streptococcus faecalis membranes   总被引:4,自引:0,他引:4  
Evidence is presented that expression of the H+ ATPase in S. faecalis is influenced by the extracellular pH and K+ level during growth. Altered expression was detected by assay of F1 ATPase and electrophoretic analysis of membrane proteins. K+-limited growth caused about a 2-fold increase in the F1 ATPase. The effect of growth at pH 6, 7 and 9 was studied. Compared to cells grown at pH 7, growth at pH 6 increased the F1 ATPase about 2-fold while growth at pH 9 reduced the F1 ATPase by nearly 4-fold. The elevated F1 ATPase activity in the pH 6 cells was associated with an increase in the F1 ATPase alpha and beta subunits in the membrane while the decrease in F1 ATPase in the pH 9 cells was associated with a marked loss of the alpha subunit. It is suggested that intracellular protons may act as effectors which regulate expression of the F1F0 gene cluster at the level of translation.  相似文献   

15.
Extreme acidophiles (microorganisms with pH optima of 相似文献   

16.
Protonmotive force (the transmembrane difference in electrochemical potential of protons, ) drives ATP synthesis in bacteria, mitochondria, and chloroplasts. It has remained unsettled whether the entropic (chemical) component of relates to the difference in the proton activity between two bulk water phases (deltapH(B)) or between two membrane surfaces (deltapH(S)). To scrutinize whether deltapH(S) can deviate from deltapH(B), we modeled the behavior of protons at the membrane/water interface. We made use of the surprisingly low dielectric permittivity of interfacial water as determined by O. Teschke, G. Ceotto, and E. F. de Souza (O. Teschke, G. Ceotto, and E. F. de Sousa, 2001, PHYS: Rev. E. 64:011605). Electrostatic calculations revealed a potential barrier in the water phase some 0.5-1 nm away from the membrane surface. The barrier was higher for monovalent anions moving toward the surface (0.2-0.3 eV) than for monovalent cations (0.1-0.15 eV). By solving the Smoluchowski equation for protons spreading away from proton "pumps" at the surface, we found that the barrier could cause an elevation of the proton concentration at the interface. Taking typical values for the density of proton pumps and for their turnover rate, we calculated that a potential barrier of 0.12 eV yielded a steady-state pH(S) of approximately 6.0; the value of pH(S) was independent of pH in the bulk water phase under neutral and alkaline conditions. These results provide a rationale to solve the long-lasting problem of the seemingly insufficient protonmotive force in mesophilic and alkaliphilic bacteria.  相似文献   

17.

Background

In the membrane-bound enzyme cytochrome c oxidase, electron transfer from cytochrome c to O2 is linked to proton uptake from solution to form H2O, resulting in a charge separation across the membrane. In addition, the reaction drives pumping of protons across the membrane.

Methods

In this study we have measured voltage changes as a function of pH during reaction of the four-electron reduced cytochrome c oxidase from Rhodobacter sphaeroides with O2. These electrogenic events were measured across membranes containing purified enzyme reconstituted into lipid vesicles.

Results

The results show that the pH dependence of voltage changes (primarily associated with proton transfer) during O2 reduction does not match that of the previously studied absorbance changes (primarily associated with electron transfer). Furthermore, the voltage changes decrease with increasing pH.

Conclusions

The data indicate that cytochrome c oxidase does not pump protons at high pH (10.5) (or protons are taken from the “wrong” side of the membrane) and that at this pH the net proton-uptake stoichiometry is ∼ 1/2 of that at pH 8. Furthermore, the results provide a basis for interpretation of results from studies of mutant forms of the enzyme.

General significance

These results provide new insights into the function of cytochrome c oxidase.  相似文献   

18.
The pH homeostasis and proton-motive force (Deltap) of Escherichia coli are dependent on the surrounding oxidoreduction potential (ORP). Only the internal pH value and, thus, the membrane pH gradient (DeltapH) component of the Deltap is modified, while the membrane potential (DeltaPsi) does not change in a significant way. Under reducing conditions (Eh < 50 mV at pH 7.0), E. coli decreases its Deltap especially in acidic media (21% decrease at pH 7.0 and 48% at pH 5.0 for a 850-mV ORP decrease). Measurements of ATPase activity and membrane proton conductance (CH+m) depending on ORP and pH have shown that the internal pH decrease is due to an increase in membrane proton permeability without any modification of ATPase activity. We propose that low ORP values de-energize E. coli by modifying the thiol : disulfide balance of proteins, which leads to an increase in the membrane permeability to protons.  相似文献   

19.
Analysis of the atp operon from the thermoalkaliphilic Bacillus sp. TA2.A1 and comparison with other atp operons from alkaliphilic bacteria reveals the presence of a conserved lysine residue at position 180 (Bacillus sp. TA2.A1 numbering) within the a subunit of these F(1)F(o)-ATP synthases. We hypothesize that the basic nature of this residue is ideally suited to capture protons from the bulk phase at high pH. To test this hypothesis, a heterologous expression system for the ATP synthase from Bacillus sp. TA2.A1 (TA2F(1)F(o)) was developed in Escherichia coli DK8 (Deltaatp). Amino acid substitutions were made in the a subunit of TA2F(1)F(o) at position 180. Lysine (aK180) was substituted for the basic residues histidine (aK180H) or arginine (aK180R), and the uncharged residue glycine (aK180G). ATP synthesis experiments were performed in ADP plus P(i)-loaded right-side-out membrane vesicles energized by ascorbate-phenazine methosulfate. When these enzyme complexes were examined for their ability to perform ATP synthesis over the pH range from 7.0 to 10.0, TA2F(1)F(o) and aK180R showed a similar pH profile having optimum ATP synthesis rates at pH 9.0-9.5 with no measurable ATP synthesis at pH 7.5. Conversely, aK180H and aK180G showed maximal ATP synthesis at pH values 8.0 and 7.5, respectively. ATP synthesis under these conditions for all enzyme forms was sensitive to DCCD. These data strongly imply that amino acid residue Lys(180) is a specific adaptation within the a subunit of TA2F(1)F(o) to facilitate proton capture at high pH. At pH values near the pK(a) of Lys(180), the trapped protons readily dissociate to reach the subunit c binding sites, but this dissociation is impeded at neutral pH values causing either a blocking of the proposed H(+) channel and/or mechanism of proton translocation, and hence ATP synthesis is inhibited.  相似文献   

20.
The acid-tolerant Rhizobium leguminosarum biovar trifolii strain ANU1173 exhibited several new phenotypes when cured of its symbiotic (Sym) plasmid and the second largest megaplasmid. Strain P22, which has lost these two plasmids, had reduced exopolysaccharide production and cell mobility on TY medium. The parent strain ANU1173 was able to grow easily in laboratory media at pH 4.5, whereas the derivative strain P22 was unable to grow in media at a pH of <4.7. The intracellular pH of strain ANU1173 was 6.8 when the external pH was 4.5. In contrast, strain P22 had an acidic intracellular pH of <6.4 when the external pH was <5.5. Strain P22 had a dramatically increased membrane permeability to protons and decreased proton extrusion activity. Analysis with sodium dodecyl sulfate-polyacrylamide gels showed that strain P22 lacked a slow-migrating lipopolysaccharide (LPS) banding group which was present in the parent strain. Mobilization of the second largest megaplasmid of strain ANU1173 back into strain P22 restored the altered LPS structure and physiological characteristics of strain P22. Mobilization of the Sym plasmid of strain ANU1173 into strain P22 showed that the second largest megaplasmid of strain ANU1173 was required for the establishment of nitrogen-fixing nodules on Trifolium repens and Trifolium subterraneum. Furthermore, an examination of a large number of specific exopolysaccharide- or LPS-deficient Rhizobium mutants did not show a positive correlation between exopolysaccharide or LPS synthesis and acid tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号