首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PC12 cells treated with nerve growth factor (NGF) or infected with Rous sarcoma virus differentiate into sympathetic, neuronlike cells. To compare the differentiation programs induced by NGF and v-src, we have established a PC12 cell line expressing a temperature-sensitive v-src protein. The v-src-expressing PC12 cell line was shown to elaborate neuritic processes in a temperature-inducible manner, indicating that the differentiation process was dependent on the activity of the v-src protein. Further characterization of this cell line, in comparison with NGF-treated PC12 cells, indicated that the events associated with neurite outgrowth induced by these two agents shared features but could be distinguished by others. Both NGF- and v-src-induced neurite outgrowths were reversible. In addition, NGF and v-src could prime PC12 cells for NGF-induced neurite outgrowth, and representative early and late NGF-responsive genes were also induced by v-src. However, unlike NGF-induced neurite growth, v-src-induced neurite outgrowth was not blocked at high cell density. A comparison of phosphotyrosine containing-protein profiles showed that v-src and NGF each increase tyrosine phosphorylation of multiple cellular proteins. There was overlap in substrates; however, both NGF-specific and v-src-specific tyrosine phosphorylations were observed. One protein which was found to be phosphorylated in both the NGF- and v-src-induced PC12 cells was phospholipase C-gamma 1. Taken together, these results suggest that v-src's ability to function as an inducing agent may be a consequence of its ability to mimic critical aspects of the NGF differentiation program and raise the possibility that Src-like tyrosine kinases are involved in mediating some of the events triggered by NGF.  相似文献   

2.
The involvement of cdc2 and cdk2 during neuronal differentiation in rat pheochromocytoma PC12 cells was examined. When PC12 cells were cultured with nerve growth factor (NGF), expression of cdc2 decreased significantly after day 5, while expression of cdk2 decreased gradually after day 7. Cells overexpressing cdc2 or cdk2 were resistant to NGF-induced differentiation and growth suppression, and maintained high cdc2 or cdk2 kinase activity, respectively, during NGF treatment. In contrast, the NGF-treated parental cells showed a marked decline in these kinase activities after day 3. When PC12 cells were treated with specific inhibitors of cdc2/cdk2 (butyrolactone-I, olomoucin), they showed marked neurite extension and up-regulation of microtubule-associated protein 2 expression. In addition, treatment with mixtures of antisense oligonucleotides for cdc2 and cdk2 resulted in down-regulation of both cdc2 and cdk2 kinase activities as well as significant neurite outgrowth and up-regulation of microtubule-associated protein 2 expression. However, neurite outgrowth was not observed in cells treated with either single antisense oligonucleotide, or antisense cdc2 + cdk4 or cdk2 + cdk4 oligonucleotide mixtures. These results suggest that simultaneous down-regulation of cdc2 and cdk2 activity is sufficient and necessary for neuronal differentiation in PC12 cells.  相似文献   

3.
The initial event in the neuronal differentiation of PC12 cells is the binding of the neurotrophin nerve growth factor (NGF) to the Trk receptor. This interaction stimulates the intrinsic tyrosine kinase activity of TRk, initiating a signalling cascade involving the phosphorylation of intracellular proteins on tyrosine, serine, and threonine residues. These signals are then in turn propagated to other messengers, ultimately leading to differentiation, neurotrophin-dependent survival and the loss of proliferative capacity. To transmit NGF signals, NGF-activated Trk rapidly associated with the cytoplasmic proteins, SHC, PI-3 kinase, and PLC-γ1. These proteins are involved in stimulating the formation of various second messenger molecules and activating the Ras signal transduction pathway. Studies with Trk mutants indicate that the acivation of the Ras pathway is necessary for complete differentiation of PC12-derived cells and for the maintenance of the differentiated phenotype. Trk also induces the tyrosine phosphorylation of SNT, a specific target of neurotrophic factor activity in neuronal cells. This review will discuss the potential roles of Trk and the proteins of the Trk signalling pathways in NGF function, and summarize our attempts to understand the mechanisms used by Trk to generate dthe many phenotypic responses of PC12 cells to NGF. 1994 John Wiley & Sons, Inc.  相似文献   

4.
Specific germline mutations of the receptor tyrosine kinase, Ret, predispose to multiple endocrine neoplasia types 2A and 2B and familial medullary thyroid carcinoma. The mechanisms by which different Ret isoforms (Ret-2A and Ret-2B) cause distinct neoplastic diseases remain largely unknown. On the other hand, forced expression of these mutated versions of Ret induces the rat pheochromocytoma cell line, PC12, to differentiate. Here we used an inducible vector encoding a dominant-negative Ras (Ras p21(N17)) to investigate the contributions of the Ras pathway to the phenotype induced in PC12 cells by the expression of either Ret-2A or Ret-2B mutants. We show that the Ret-induced molecular and morphological changes are both mediated by Ras-dependent pathways. However, even though inhibition of Ras activity was sufficient to revert Ret-induced differentiation, the kinetics of morphological reversion of the Ret-2B- was more rapid than the Ret-2A-transfected cells. Further, we show that in Ret-transfected cells the suc1-associated neurotrophic factor-induced tyrosine phosphorylation target, SNT, is chronically phosphorylated in tyrosine residues, and associates with the Sos substrate. These results indicate the activation of the Ras cascade as an essential pathway triggered by the chronic active Ret mutants in PC12 cells. Moreover, our data indicate SNT as a substrate for both Ret mutants, which might mediate the activation of this cascade.  相似文献   

5.
M S Qiu  S H Green 《Neuron》1991,7(6):937-946
Activation of p21ras, demonstrated directly as an increase in p21ras-associated GTP, was induced rapidly but transiently by both nerve growth factor (NGF) and epidermal growth factor (EGF) in PC12 cells. The factors activate p21ras to equal extents and with virtually identical time courses. Growth factor-induced p21ras activation and tyrosine phosphorylation have similar time courses and sensitivities to genistein inhibition, indicating that p21ras activation is a result of tyrosine kinase activity. Furthermore, PC12 mutants lacking the Trk NGF receptor tyrosine kinase also lack NGF-inducible p21ras activation. The protein kinase inhibitor K252a and the methyltransferase inhibitor MTA abolish NGF-induced, but not EGF-induced, p21ras activation--effects correlated with inhibition only of NGF-induced tyrosine phosphorylation. In spite of differences in sensitivity to genistein, MTA, and K252a, EGF- and NGF-stimulated p21ras activation are not additive, implying that they do share at least one step in common.  相似文献   

6.
We have investigated the signaling properties of the fibroblast growth factor (FGF) receptor substrate 3 (FRS3), also known as SNT-2 or FRS2beta, in neurotrophin-dependent differentiation in comparison with the related adapter FRS2 (SNT1 or FRS2alpha). We demonstrate that FRS3 binds all neurotrophin Trk receptor tyrosine kinases and becomes tyrosine phosphorylated in response to NGF, BDNF, NT-3 and FGF stimulation in transfected cells and/or primary cortical neurons. Second, the signaling molecules Grb2 and Shp2 bind FRS3 at consensus sites that are highly conserved among FRS family members and that Shp2, in turn, becomes tyrosine phosphorylated. While FRS3 over-expression in PC12 cells neither increases NGF-induced neuritogenesis nor activation of Map kinase/AKT, comparable to previous reports on FRS2, over-expression of a chimeric adapter containing the PH/PTB domains of the insulin receptor substrate (IRS) 2, in place of the PTB domain of FRS3 (IRS2-FRS3) supports insulin-dependent Map kinase activation and neurite outgrowth in PC12 cells. Collectively, these data demonstrate that FRS3 supports ligand-induced Map kinase activation and that the chimeric IRS2-FRS3 adapter is stimulating sufficient levels of activated MapK to support neurite outgrowth in PC12 cells.  相似文献   

7.
Abstract: In contrast to the intensively studied nerve growth factor (NGF)-related family of cytokines, relatively little is known about the mechanisms of neurotrophic activity elicited by the cytokine interleukin-6 (IL-6). We have examined the mechanisms of IL-6-induced neuronal differentiation of the pheochromocytoma cell line PC12. IL-6 independently induced the expression of peripherin , identifying this gene as the first neuronal-specific target of IL-6. However, IL-6 alone failed to elicit neurite outgrowth in PC12 cells and instead required low levels of Trk/NGF receptor tyrosine kinase activity to induce neuronal differentiation. The cooperating Trk signal could be provided by either overexpression of Trk or exposure to low concentrations of NGF. IL-6 also functioned cooperatively with basic fibroblast growth factor to promote PC12 differentiation. IL-6 and Trk/NGF synergized in enhancing tyrosine phosphorylation of the Erk-1 mitogen-activated protein kinase and in activating expression of certain NGF target genes. NGF also induced expression of the gp80 subunit of the IL-6 receptor, providing another potential mechanism of cooperativity between NGF and IL-6 signaling. We propose that IL-6 functions as an enhancer of NGF signaling rather than as an autonomous neuronal differentiation signal. Moreover, our results demonstrate that a Trk receptor-specific cellular response can be achieved in the absence of NGF through amplification of its basal signaling activity by the IL-6 receptor system.  相似文献   

8.
We have investigated the roles of pp60c-src and p21c-ras proteins in transducing the nerve growth factor (NGF) and fibroblast growth factor (FGF) signals which promote the sympathetic neuronlike phenotype in PC12 cells. Neutralizing antibodies directed against either Src or Ras proteins were microinjected into fused PC12 cells. Each antibody both prevented and reversed NGF- or FGF-induced neurite growth, a prominent morphological marker for the neuronal phenotype. These data demonstrate the involvement of both pp60c-src and p21c-ras proteins in NGF and FGF actions in PC12 cells, and establish a physiological role for the pp60c-src tyrosine kinase in signal transduction pathways initiated by receptor tyrosine kinases in these cells. Additional microinjection experiments, using PC12 transfectants containing inducible v-src or ras oncogene activities, demonstrated a specific sequence of Src and Ras actions. Microinjection of anti-Ras antibody blocked v-src-induced neurite growth, but microinjection of anti-Src antibodies had no effect on ras oncogene-induced neurite growth. We propose that a cascade of Src and Ras actions, with Src acting first, is a significant feature of the signal transduction pathways for NGF and FGF. The Src-Ras cascade may define a functional cassette in the signal transduction pathways used by growth factors and other ligands whose receptors have diverse structures and whose range of actions on various cell types include mitogenesis and differentiation.  相似文献   

9.
Differentiation of neuronal precursor cells in response to neurotrophic differentiation factors is accompanied by the activation of membrane-anchored SNT signaling adaptor proteins. Two classes of differentiation factors, the neurotrophins and fibroblast growth factors, induce rapid tyrosine phosphorylation of SNT1(FRS2alpha), which in turn enables SNT1 to recruit Shp2 tyrosine phosphatase and Grb2 adaptor protein in complex with the Ras GDP/GTP exchange factor Sos. To determine effector functions of SNT that promote neuronal differentiation of PC12 pheochromocytoma cells, we engineered a chimeric protein, SNT1(IRS)CX, bearing the effector region of SNT1 and the insulin receptor recognition domains of IRS2. Insulin promoted tyrosine phosphorylation of SNT1(IRS)CX in transfected PC12 cells accompanied by sustained activation of ERK1/2 mitogen-activated protein kinases and neuronal differentiation. The SNT1(IRS)CX-mediated response was dependent on endogenous Ras, MEK, and Shp2 activities. Mutagenesis of SNT1(IRS)CX identified three classes of effector motifs within SNT critical for both sustained ERK activation and neuronal differentiation: 1) four phosphotyrosine motifs that mediate recruitment of Grb2, 2) two phosphotyrosine motifs that mediate recruitment of Shp2, and 3) a C-terminal motif that functions by helping to recruit Sos. We discuss possible mechanisms by which three functionally distinct SNT effector motifs collaborate to promote a downstream biochemical and biological response.  相似文献   

10.
Differentiation and survival of neuronal cell types requires the action of neurotrophic polypeptides such as nerve growth factor (NGF). In the central and peripheral nervous system and the phaeochromocytoma cell model PC12, NGF exerts its effects through the activation of the signalling capacity of Trk, a receptor tyrosine kinase (RTK) which upon interaction with NGF becomes phosphorylated on tyrosines and thereby acquires the potential to interact with signal-transducing proteins such as phospholipase C-gamma (PLC gamma), phosphatidylinositol-3'-kinase (PI3'-K) and SHC. Mutagenesis of the specific binding sites for these src homology 2 (SH2) domain-containing substrates within the Trk cytoplasmic domain suggests a non-essential function of PI3'-K and reveals a major role for the signal controlled by the SHC binding site at tyrosine 490 and a co-operative function of the PLC gamma-mediated pathway for neuronal differentiation of PC12 cells.  相似文献   

11.
Treatment of PC12 cells with nerve growth factor (NGF) induces a rapid increase in tyrosine phosphorylation of multiple cellular proteins. Expression of a dominant inhibitory Ras mutant specifically blocked NGF- and TPA-induced tyrosine phosphorylation of two proteins of approximately 42 and 44 kd. Conversely, expression of an oncogenic variant of Ras induced tyrosine phosphorylation of the same 42 and 44 kd proteins. The 44 kd protein was immunoprecipitated with an antibody directed against extracellular signal-regulated kinase 1/mitogen-activated protein kinase (MAPK) and the 42 kd protein comigrated with a 42 kd MAPK, indicating that at least one and probably both Ras-regulated phosphoproteins are MAPKs. In addition, MAPK activation, as measured by in vitro phosphorylation of myelin basic protein, was also regulated by Ras. Ras was not required for NGF-induced activation of Trk or tyrosine phosphorylation of PLC-gamma 1. Thus, NGF-induced tyrosine phosphorylation occurs both prior to and following Ras action, and Ras plays a critical role in the NGF- and TPA-induced tyrosine phosphorylation of MAPKs.  相似文献   

12.
Ras has been thought to be involved in neuronal differentiation of rat pheochromocytoma PC12 cells. PC12 cells are immature adrenal chromaffin-like cells which undergo differentiation to sympathetic neuron-like cells in response to nerve growth factor (NGF). Fibroblast growth factor (FGF) and interleukin (IL)-6 can also induce differentiation of PC12 cells. In this paper, we report that NGF, FGF, and IL-6 induce an accumulation of an active Ras.GTP complex. In the serum-starved culture of PC12 cells, 6% of the Ras protein was complexed with GTP. Upon stimulation with NGF, the percentage of Ras.GTP increased to 24% after 2 min, and the high level of Ras.GTP was maintained for at least 16 h. On the other hand, the activation of Ras by FGF and IL-6 showed distinct kinetics; about 3-fold increase of Ras.GTP was detected at 10 min, and afterward, the level returned to the basal level within 60 min. These observations provide direct evidence that activation of Ras is involved in signal transduction from these differentiation factors. In addition, it was found that growth factors, including epidermal growth factor, insulin, and insulin-like growth factor-I, and a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), can also activate Ras under the same conditions. A tyrosine kinase-specific inhibitor, genistein, inhibited the increase of Ras.GTP induced by NGF and other factors. On the other hand, down-regulation of protein kinase C (PKC) by prolonged treatment with TPA, which sufficiently blocked TPA-induced Ras activation, did not abolish the formation of Ras.GTP by NGF. These results suggest that tyrosine kinases rather than PKC play a major role in the NGF-induced activation of Ras in PC12 cells.  相似文献   

13.
The rat pheochromocytoma PC12 cell line differentiates into a sympathetic neuronal phenotype upon treatment with either nerve growth factor (NGF) or basic fibroblast growth factor. The alkaloid-like compound K-252a has been demonstrated to be a specific inhibitor of NGF-induced biological responses in PC12 cells (Koizumi, S., Contreras, M. L., Matsuda, Y., Hama, T., Lazarovici, P., and Guroff, G. (1988) J. Neurosci. Res. 8, 715-721). NGF interacts with the protein product of the proto-oncogene trk and rapidly stimulates the tyrosine phosphorylation of both p140prototrk and a number of cellular substrates. Here we show that these phosphorylation events are directly inhibited in PC12 cells by K252a in a dose-dependent manner, indicating that the site of action of this inhibitor is at the NGF receptor level. K-252a inhibits p140prototrk activity in vitro, demonstrating that K-252a has a direct effect on the p140prototrk tyrosine kinase. Though many of the biochemical responses to NGF in PC12 cells are mimicked by basic fibroblast growth factor and epidermal growth factor, K-252a has no effect on the action of these growth factors in PC12 cells, demonstrating that the initial biological events initiated by NGF are distinctive during neuronal differentiation.  相似文献   

14.
15.
The human tumorous imaginal disc 1 (TID1) proteins including TID1(L) and TID1(S), members of the DnaJ domain protein family, are involved in multiple intracellular signaling pathways such as apoptosis induction, cell proliferation, and survival. Here we report that TID1 associates with the Trk receptor tyrosine kinases and regulates nerve growth factor (NGF)-induced neurite outgrowth in PC12-derived nnr5 cells. Binding assays and transfection studies showed that the carboxyl-terminal end of TID1 (residues 224-429) bound to Trk at the activation loop (Tyr(P)(683)-Tyr(684)(P)(684) in rat TrkA) and that TID1 was tyrosine phosphorylated by Trk both in yeast and in transfected cells. Moreover endogenous TID1 was also tyrosine phosphorylated by and co-immunoprecipitated with Trk in neurotrophin-stimulated primary rat hippocampal neurons. Overexpression studies showed that both TID1(L) and TID1(S) significantly facilitated NGF-induced neurite outgrowth in TrkA-expressing nnr5 cells possibly through a mechanism involving increased activation of mitogen-activated protein kinase. Consistently knockdown of endogenous TID1, mediated with specific short hairpin RNA, significantly reduced NGF-induced neurite growth in nnr5-TrkA cells. These data provide the first evidence that TID1 is a novel intracellular adaptor that interacts with the Trk receptor tyrosine kinases in an activity-dependent manner to facilitate Trk-dependent intracellular signaling.  相似文献   

16.
We have studied the role of protein tyrosine phosphatases (PTPases) during neuronal differentiation of PC12 cells. Nerve growth factor (NGF), a well-characterized differentiating agent for these cells, led to a decrease in DNA synthesis within 24 h. This was accompanied by a 2- to 3-fold increase in the activity of PTPases, measured as the dephosphorylation of polyacidic or polybasic substrates phosphorylated on tyrosine. PTPase activation was independent of cell density and proportional to NGF concentration, with a half-maximal effect occurring at 0.35 nM. High-performance liquid chromatography size exclusion chromatography revealed that PTPases with molecular masses of 550, 300, and 60 kilodaltons were activated in response to NGF. Additional studies showed that the presence of NGF made PC12 cells refractory to the mitogenic effect of epidermal growth factor. Our data indicate that NGF-induced neuronal differentiation and growth arrest in PC12 cells are associated with activation of several PTPases. We speculate that PTPase activation in response to NGF may inhibit the mitogenic actions of other growth factors.  相似文献   

17.
The transforming gene of the avian sarcoma virus CT10 encodes a fusion protein (p47gag-crk or v-Crk) containing viral Gag sequences fused to cellular sequences consisting primarily of Src homology regions 2 and 3 (SH2 and SH3 sequences). Here we report a novel function of v-Crk in the mammalian pheochromocytoma cell line, PC12, whereby stable expression of v-Crk induces accelerated differentiation, as assessed by induction of neurites following nerve growth factor (NGF) or basic fibroblast growth factor (bFGF) treatment compared with the effect in native PC12 cells. Surprisingly, however, these cells also develop extensive neurite processes after epidermal growth factor (EGF) stimulation, an event which is not observed in native PC12 cells. Following EGF or NGF stimulation of the v-CrkPC12 cells, the v-Crk protein itself became tyrosine phosphorylated within 1 min. Moreover, in A431 cells or TrkA-PC12 cells, which overexpress EGF receptors and TrkA, respectively, a GST-CrkSH2 fusion protein was indeed capable of binding these receptors in a phosphotyrosine-dependent manner, suggesting that v-Crk can directly couple to receptor tyrosine kinase pathways in PC12 cells. In transformed fibroblasts, v-Crk binds to specific tyrosine-phosphorylated proteins of p130 and paxillin. Both of these proteins are also complexed to v-Crk in PC12 cells, as evidenced by their coprecipitation with v-Crk in detergent lysates, suggesting that common effector pathways may occur in both cell types. However, whereas PC12 cellular differentiation can occur solely by overexpression of the v-Src or oncogenic Ras proteins, that induced by v-Crk requires a growth factor stimulatory signal, possibility in a two-step process.  相似文献   

18.
NS-417 (5-(4-Chlorophenyl)-8-methyl-6-7-8-9-tetrahydro-1-H-pyrrolo[3.2-h]isoquinoline-2,3-dione-3-oxim hydrochloric acid salt) belongs to a new chemical series of compounds. NS-417 rescued differentiated PC12 cells from death induced by withdrawal of serum and nerve growth factor. Furthermore, NS-417 stimulated neurotrophic factor-induced neurite outgrowth in undifferentiated PC12 cells. In accordance with this observation, NS-417 potentiated NGF-induced signaling, such as activation of the extracellular signal-regulated kinases ERK1 and ERK2 and the Akt kinase. NS-417 also enhanced ERK activation induced by 10 minutes stimulation with NGF, bFGF or EGF in PC12 cells. In addition to the effect in PC12 cells, NS-417 increased the number of tyrosine hydroxylase (TH) positive cells in cultures established from dissociated E14 rat ventral mesencephali.  相似文献   

19.
It has been reported that growth factors activate Ras through a complex of an adaptor type SH2-containing molecule, Grb2, and a Ras guanine nucleotide-releasing protein (GNRP), mSos. We report on the involvement of another adaptor molecule, CRK, in the activation of Ras. Overexpression of wild-type CRK proteins CRK-I and CRK-II enhanced the nerve growth factor (NGF)-induced activation of Ras in PC12 cells, although the basal level of GTP-bound active Ras was not altered. In contrast, mutants with a single amino acid substitution in either the SH2 or SH3 domain of the CRK-I protein inhibited the NGF-induced activation of Ras. Two GNRPs for the Ras family, mSos and C3G, were coimmunoprecipitated with the endogenous Crk proteins in PC12 cells. The association between C3G and the CRK mutants was dependent upon the presence of intact SH3. The SH2 domain of CRK bound to the SHC protein phosphorylated on tyrosine residues by NGF stimulation. The results demonstrate that, in addition to Grb2, CRK participates in signaling from the NGF receptor and that two GNRPs appear to transmit signals from these adaptor molecules to Ras.  相似文献   

20.
Nerve growth factor (NGF) induces survival and differentiation of the neural crest-derived PC12 cell line. Caveolae are cholesterol-enriched, caveolin-containing plasma membrane microdomains involved in vesicular transport and signal transduction. Here we demonstrate the presence of caveolae in PC12 cells and their involvement in NGF signaling. Our results showed the expression of caveolin-1 by Western blot and confocal immuno-microscopy. The presence of plasma membrane caveolae was directly shown by rapid-freeze deep-etching electron microscopy. Moreover, combined deep-etching and immunogold techniques revealed the presence of the NGF receptor TrkA in the caveolae of PC12 cells. These data together with the cofractionation of Shc, Ras, caveolin, and TrkA in the caveolae fraction supported a role for these plasma membrane microdomains in NGF signaling. To approach this hypothesis, caveolae were disrupted by treatment of PC12 cells with cholesterol binding drugs. Either filipin or cyclodextrin treatment increased basal levels of MAPK phosphorylation. In contrast, pretreatment of PC12 cells with these drugs inhibited the NGF- but not the epidermal growth factor-induced MAPK phosphorylation without affecting the TrkA autophosphorylation. Taken together, our results demonstrate the presence of caveolae in PC12 cells, which contain the high affinity NGF receptor TrkA, and the specific involvement of these cholesterol-enriched plasma membrane microdomains in the propagation of the NGF-induced signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号