首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimethyl suberimidate is a bifunctional reagent that is used for cross-linking the protein components of oligomeric macromolecules. In this report, dimethyl suberimidate is shown to specifically cross-link oligo(dT) of varying lengths to the DNA-binding subunits of a multimeric helicase-primase encoded by herpes simplex virus type 1. This result indicates that dimethyl suberimidate and other imidoester cross-linking reagents may be useful for characterizing the interaction of oligo(dT) with proteins that bind single-stranded DNA.  相似文献   

2.
In avian sarcoma and leukemia viruses, the gag protein p19 functions structurally as a matrix protein, connecting internal components with the viral envelope. We have used a combination of in situ cross-linking and peptide mapping to localize within p19 the regions responsible for two major interactions in this complex, p19 with lipid and p19 with p19. Lipid-protein cross-links were localized near the amino terminus within the first 35 amino acids of the polypeptide. Homotypic protein-protein disulfide bridges were found to originate from near the carboxy terminus of p19, from cysteine residues at amino acids 111 and 153. These results suggest that p19 is divided into domains with distinct functions. The peptide maps constructed for p19, and for the related proteins p23 in avian sarcoma and leukemia viruses and p19 beta in recombinant avian sarcoma viruses, should serve as useful tools for other types of studies involving these proteins.  相似文献   

3.
Many host cell surface proteins, including viral receptors, are incorporated into enveloped viruses. To address the functional significance of these host proteins, murine leukemia viruses containing the cellular receptors for Rous sarcoma virus (Tva) or ecotropic murine leukemia virus (MCAT-1) were produced. These receptor-pseudotyped viruses efficiently infect cells expressing the cognate viral envelope glycoproteins, with titers of up to 105 infectious units per milliliter for the Tva pseudotypes. Receptor and viral glycoprotein specificity and functional requirements are maintained, suggesting that receptor pseudotype infection recapitulates events of normal viral entry. The ability of the Tva and MCAT-1 pseudotypes to infect cells efficiently suggests that, in contrast to human immunodeficiency virus type 1 entry, neither of these retroviral receptors requires a coreceptor for membrane fusion. In addition, the ability of receptor pseudotypes to target infected cells suggests that they may be useful therapeutic reagents for directing infection of viral vectors. Receptor-pseudotyped viruses may be useful for identifying new viral receptors or for defining functional requirements of known receptors. Moreover, this work suggests that the production of receptor pseudotypes in vivo could provide a mechanism for expanded viral tropism with potential effects on the pathogenesis and evolution of the virus.  相似文献   

4.
5.
Murine leukemia viruses contain a low molecular weight basic protein, designated p10, which binds to single-stranded nucleic acids. The complete amino acid sequence of p10 from the Rauscher strain of virus has been determined. The partial amino acid sequences of p10s from Moloney, Friend, AKR, Gross, radiation leukemia, and BALB/2 viral strains have also been determined using microsequencing techniques. Rauscher p10 is composed of 56 amino acid residues; the other p10s are similar in size but differ from Rauscher by a few conservative amino acid substitutions. The structure of Rauscher p10 was compared to the structure of a functionally homologous protein from Rous avian sarcoma virus. The comparison revealed regions of amino acid sequence homologies which indicate a phylogenetic relationship between the murine and avian viral strains. The analyses revealed a periodic placement of three Cys residues and a Gly-His sequence. A structure involving these residues is found once in the murine protein and twice in the avian protein. A similar structure is seen in the single stranded nucleic acid binding protein of bacteriophage T4. However, in the latter case, the order of amino acid residues is inverted.  相似文献   

6.
The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.  相似文献   

7.
Cross-linking of phospholipids to proteins in the erythrocyte membrane   总被引:3,自引:0,他引:3  
Erythrocytes treated with the cross-linking agents difluorodinitrobenzene and suberimidate are rendered refractory to lysis. When ghosts are treated with these reagents 8.4% and 2.3% of the total lipid phosphate is cross-linked to protein by difluorodinitrobenzene and suberimidate respectively. This represents 20 and 5.8% of the amino-phospholipids. The lipids extracted from treated ghosts do not react with ninhydrin as do lipids extracted from control ghosts. Thus essentially all the amino-phospholipids of the ghosts react with these cross-linking agents and up to 20% becomes cross-linked to proteins.  相似文献   

8.
The internal structural proteins of avian sarcoma and leukemia viruses are derived from a precursor polypeptide that is the product of the viral gag gene. The N-terminal domain of the precursor gives rise to p19, a protein that interacts with the lipid envelope of the virus and that may also interact with viral RNA. The C terminus of p19 from the Prague C strain of Rous sarcoma virus was previously assigned to a tyrosine residue 175 amino acids from the N terminus. We have used metabolic labeling and carboxypeptidase digestion to show that the C terminus of p19 is actually tyrosine 155. This implies the existence of a sixth gag protein 22 amino acids in length and located between p19 and p10 on the gag precursor. The p19 species of some recombinant avian sarcoma viruses and of the defective endogenous virus derived from the ev-1 locus migrate on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as if they were about 4,000 daltons smaller than p19. We have elucidated the structure of these forms, called p19 beta, by analysis of the proteins and determination of the DNA sequence of the p19 region of the gag gene from ev-1 and ev-2. Esterification of carboxyl groups completely suppressed the differences in migration of p19 and p19 beta. Peptide mapping showed the altered mobility to be determined by sequences in the C-terminal cyanogen bromide fragment of the proteins. We conclude from the DNA sequence that a single glutamate-lysine alteration is responsible for the altered electrophoretic mobility.  相似文献   

9.
10.
Arup Sen  George J. Todaro 《Cell》1977,10(1):91-99
A structural protein purified from the Rous sarcoma virus (RSV) can specifically bind in vitro to purified avian, but not mammalian, type C viral RNA. Following ultraviolet irradiation of viral particles under conditions which stabilize the polyploid 70S viral RNA, the same polypeptide can be directly purified from the RSV genome. Based on its electrophoretic mobility in polyacrylamide gels containing sodium dodecylsulfate, the RNA binding protein has been identified as the major phosphoprotein (p19) of avian type C viruses. Similar experiments show that the major phosphoproteins of mammalian type C viruses (p12 for murine viruses and p16 for endogenous primate viruses) are also the specific RNA binding proteins and, similarly, are found closely associated with the 70S RNA genomes in the intact viral particles.  相似文献   

11.
The major non-glycosylated structural proteins of feline leukemia virus have been isolated, and competition immunoassays have been developed for each. These proteins include the 27,000- to 30,000-molecular-weight major internal antigen designated p30, a 15,000-molecular-weight protein (p15), an acidic protein of 12,000 molecular weight (p12), and a highly basic 10,000-molecular-weight protein (p10). Immunologically and biochemically corresponding proteins of feline and murine leukemia viruses have been identified. and, on the basis of analogy to the known sequence of a prototype type C virus of mouse origin, the map order of the gag region of the feline type C viral genome has been tentatively deduced as NH2-p15-p12-p10-COOH. The demonstration of two feline leukemia virus gag gene-coded proteins, p15 and p12, expressed in the form of an uncleaved precursor in a mink cell line nonproductively transformed by feline sarcoma virus provides indirect support for the proposed sequence.  相似文献   

12.
Valproic acid (VPA) is a short-chain fatty acid commonly used for treatment of neurological disorders. As VPA can interfere with cellular lipid metabolism, its effect on the infection of cultured cells by viruses of seven viral families relevant to human and animal health, including eight enveloped and four nonenveloped viruses, was analyzed. VPA drastically inhibited multiplication of all the enveloped viruses tested, including the zoonotic lymphocytic choriomeningitis virus and West Nile virus (WNV), while it did not affect infection by the nonenveloped viruses assayed. VPA reduced vesicular stomatitis virus infection yield without causing a major blockage of either viral RNA or protein synthesis. In contrast, VPA drastically abolished WNV RNA and protein synthesis, indicating that this drug can interfere the viral cycle at different steps of enveloped virus infection. Thus, VPA can contribute to an understanding of the crucial steps of viral maturation and to the development of future strategies against infections associated with enveloped viruses.  相似文献   

13.
Specific binding of the type C viral core protein p12 with purified viral RNA.   总被引:24,自引:0,他引:24  
A Sen  C J Sherr  G J Todaro 《Cell》1976,7(1):21-32
The major viral phosphoproteins (p12) of the Rauscher murine leukemia virus (R-MuLV) and the simian sarcoma-associated virus (SSAV) bind in vitro to their homologous 70S and 35S viral RNAs. Using purified 32P-labeled RNA and 125I-labeled p12 protein, complexes that are stabilized by formaldehyde-cross-linking can be readily detected after velocity gradient centrifugation. The in vitro reconstructed ribonucleoprotein complexes are seen only with p12 proteins incubated with viral RNAs isolated from the same type C viruses; no such complexes form with heterologous protein-RNA mixtures. Homologous but not heterologous p12 molecules compete with radiolabeled p12 protein for the specific viral RNA binding sites. The competition assay permits the detection of 10 ng of viral p12 protein. The major internal protein of type C viruses (p30) does not bind to viral RNA using identical assay conditions. From the specific activities of the radiolabeled components and also by equilibrium sedimentation analysis, we estimate that fewer than 15 molecules of p12 protein bind to each molecule of viral RNA. Both the specificity and stoichiometry of the p12-RNA interactions suggest that these RNA tumor virus proteins have a regulatory role in cells.  相似文献   

14.
A replication-defective murine retroviral construct, termed pME26, was generated by inserting avian gag-myb-ets sequences derived from the cloned avian acute leukemia virus E26 into an Abelson murine leukemia virus-derived retroviral vector. ME26 virus can be rescued efficiently from transfected NIH 3T3 cells by replicating murine leukemia viruses. Either pME26-transfected nonproducers or ME26 virus-infected NIH 3T3 cells expressed a 135-kilodalton fusion protein (p135) which was detectable by immunoprecipitation with antiserum directed against avian leukemia virus p27gag, myb or ets oncogene protein, or murine leukemia virus p15gag and was principally localized in the nucleus. NIH 3T3 cells infected with ME26 exhibited morphological alterations and increased proliferation in reduced serum and formed small colonies in agar suspension. Discrete foci could be readily recognized in cells maintained in a defined medium containing 0.03 to 0.1% calf serum. In newborn NFS/N mice, ME26 induced a significantly higher mortality and incidence of erythroid and myeloid leukemias. Analysis of a series of mutants affecting the expression of various portions of p135 indicated that the v-ets gene acts to mitogenically stimulate the proliferation of NIH 3T3 fibroblasts and reduces or abolishes their serum dependence. These properties provide an assay system to study functions of the ets gene family.  相似文献   

15.
To examine the protein proximity and subunit organization of type C retroviruses, preparations of AKR murine leukemia virus were treated with bifunctional cross-linking reagents and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The cross-linked components obtained were characterized by immunoprecipitation with monospecific antisera against purified viral proteins, followed by SDS-PAGE analysis both before and after cleavage of the cross-links. With these procedures, complexes of both viral envelope and core components were identified. The major envelope subunit obtained was a large (apparent molecular weight of 450,000 to 500,000), glycosylated complex, composed of four to six gp70-p15(E) subunits. This complex was detected over a 100-fold range of cross-linker concentration and thus seems to represent a particularly stable viral substructure. The cross-linked complexes of the core proteins consisted of oligomers of p30 dimers, suggesting that the p30 dimer is a basic structural unit of the viral core. When virion preparations, which had previously been disrupted with the nonionic detergent Nonidet P-40, were cross-linked, the envelope complex was still observed, indicating that this structure is stable in the presence of Nonidet P-40. A similar envelope structure was observed for feline leukemia virus, suggesting that such a complex may be a conserved feature of oncornavirus structure.  相似文献   

16.
Recombinant murine retroviruses containing the src gene of the avian retrovirus Rous sarcoma virus were isolated. Such viruses were isolated from cells after transfection with DNAs in which the src gene was inserted into the genome of the amphotropic murine retrovirus 4070A. The isolated viruses had functional gag and pol genes, but they were all env defective since the src gene was inserted in the middle of the env gene coding region. Infectious transforming virus could be isolated only from cells transfected with DNA constructions in which the src gene was in the same polarity as that of a long terminal repeat of the amphotropic viral genome. These recombinant viruses encoded a pp60src protein with a molecular weight similar to that of the Schmidt-Ruppin strain of Rous sarcoma virus. In addition, the src protein(s) of these recombinant viruses was as active as protein kinases in the immune complex protein kinase assay. Intravenous injection of helper-independent Moloney and Friend murine leukemia virus pseudotypes of the src recombinant viruses into 6-week-old NIH Swiss mice resulted in the appearance of splenic foci within 2 weeks, splenomegaly and, later after infection (8 to 10 weeks), anemia. Infectious transforming virus could be recovered from the spleens of diseased animals. Such viruses encoded pp60src but not p21ras or mink cell focus-forming virus-related glycoproteins.  相似文献   

17.
The paramyxoviruses define a diverse group of enveloped RNA viruses that includes a number of important human and animal pathogens. Examples include human respiratory syncytial virus and the human parainfluenza viruses, which cause respiratory illnesses in young children and the elderly; measles and mumps viruses, which have caused recent resurgences of disease in developed countries; the zoonotic Hendra and Nipah viruses, which have caused several outbreaks of fatal disease in Australia and Asia; and Newcastle disease virus, which infects chickens and other avian species. Like other enveloped viruses, paramyxoviruses form particles that assemble and bud from cellular membranes, allowing the transmission of infections to new cells and hosts. Here, we review recent advances that have improved our understanding of events involved in paramyxovirus particle formation. Contributions of viral matrix proteins, glycoproteins, nucleocapsid proteins, and accessory proteins to particle formation are discussed, as well as the importance of host factor recruitment for efficient virus budding. Trafficking of viral structural components within infected cells is described, together with mechanisms that allow for the selection of specific sites on cellular membranes for the coalescence of viral proteins in preparation of bud formation and virion release.  相似文献   

18.
Viral particles preferentially incorporate extra- and intracellular constituents of host cell lipid rafts, a phenomenon central to pseudotyping. Based on this mechanism, we have developed a system for the predictable decoration of enveloped viruses with functionally active cytokines that circumvents the need to modify viral proteins themselves. Human interleukin-2 (hIL-2), hIL-4, human granulocyte-macrophage colony-stimulating factor (hGM-CSF), and murine IL-2 (mIL-2) were used as model cytokines and fused at their C terminus to the glycosylphosphatidylinositol (GPI) acceptor sequence of human Fcgamma receptor III (CD16b). We show here that genetically modified cytokines are all well expressed on 293 producer cells. However, only molecules equipped with GPI anchors but not those linked to transmembrane/intracellular regions of type I membrane proteins are efficiently targeted to lipid rafts and consequently to virus-like particles (VLP) induced by Moloney murine leukemia virus Gag-Pol. hIL-4::GPI and hGM-CSF::GPI coexpressed on VLP were found to differentiate monocytes towards dendritic cells. Apart from myeloid-committed cell types, VLP-bound cytokines also act efficiently on lymphocytes. hIL-2::GPI strongly costimulated T-cell receptor (TCR)/CD3 dependent T-cell activation in vitro and mIL-2::GPI-coactivated antigen-specific T cells in vivo. On a molar basis, the functional activity of VLP-bound hIL-2::GPI was found to be comparable to that of soluble hIL-2. VLP decorated with hIL-2::GPI and coexpressing a TCR/CD3 ligand have an IL-2-specific activity of 5 x 10(4) units/mg protein. Virus particles decorated with lipid-modified cytokines might help to improve viral strains for vaccination purposes, the propagation of factor-dependent cell types, as well as gene transfer by viral systems in the future.  相似文献   

19.
Basolateral maturation of retroviruses in polarized epithelial cells.   总被引:20,自引:12,他引:8       下载免费PDF全文
We have investigated the maturation sites of avian and mammalian C-type retroviruses in polarized epithelial cells. Examination of thin sections of Madin Darby canine kidney cells infected with RD114 or avian reticuloendotheliosis virus revealed that these viruses mature from the basolateral membrane domains. Similar results were obtained with a continuous line of mouse mammary epithelial cells infected with Friend, Moloney, Rauscher, or Kirsten murine leukemia viruses, or Friend virus-related or Moloney virus-related mink cell focus-forming viruses. Immunofluorescence observations indicate that viral glycoproteins are inserted only at the basolateral membranes in these cells. Because of the availability of DNA and protein sequence data, and of molecularly cloned viruses, these virus systems offer advantages for molecular studies on directional transport of plasma membrane glycoproteins.  相似文献   

20.
Viral proteins expressed on the surface of murine leukemia cells.   总被引:9,自引:6,他引:3       下载免费PDF全文
Leukemic cells of AKR mice contain as constituents of their membranes the murine leukemia virus envelope protein gp70 and the precursor polyprotein of the viral internal (core) structural proteins. Both gp70 and the core polyprotein are represented on the cell surface as glycoproteins, as evidenced by incorporation of [3H]glucosamine into their structure and the binding of these proteins to lectins. The glycosylated core polyprotein exists in at least two serologically distinguishable forms: the 95,000-dalton polyprotein reacts with antisera prepared against the viral proteins p30, p12, and p10, whereas the 85,000-dalton polyprotein reacts with antisera prepared against the viral proteins p30 and p12, but not p10. Additional heterogeneity in these cell surface polyproteins has been observed wtih leukemias induced by exogenous leukemia viruses. Spontaneous leukemia cells of AKR mice invariably express gp70 and the core polyprotein on their cell surface; normal thymocytes of young AKR mice express gp70, but not the core polyprotein on their surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号