首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A hierarchical view of niche relations reconciles the scale‐dependent effects of abiotic and biotic processes on species distribution patterns and underlies most current approaches to distribution modeling. A key prediction of this framework is that the effects of biotic interactions will be averaged out at macroscales – an idea termed the Eltonian noise hypothesis (ENH). We test this prediction by quantifying regional variation in local abiotic and biotic niche relations and assess the role of macroclimate in structuring biotic interactions, using a non‐native invasive grass, Microstegium vimineum, in its introduced range. Consistent with hierarchical niche relations and the ENH, macroclimate structures local biotic interactions, while local abiotic relations are regionally conserved. Biotic interactions suppress M. vimineum in drier climates but have little effect in wetter climates. A similar approach could be used to identify the macroclimatic conditions under which biotic interactions affect the accuracy of local predictions of species distributions.  相似文献   

3.
Disentangling how communities of soil organisms are deterministically structured by abiotic and biotic factors is of utmost relevance, and few data sets on co‐occurrence patterns exist in soil ecology compared to other disciplines. In this study, we assessed species spatial co‐occurrence and niche overlap together with the heterogeneity of selected soil properties in a gallery forest (GF) of the Colombian Llanos. We used null‐model analysis to test for non‐random patterns of species co‐occurrence and body size in assemblages of earthworms and whether the pattern observed was the result of environmental heterogeneity or biotic processes structuring the community at small scales by means of co‐inertia analysis (CoIA). The results showed that earthworm species co‐occurred more frequently than expected by chance at short distances, and CoIA highlighted a significant specific relationship between earthworm species and soil variables. The effect of soil environmental heterogeneity on one litter‐feeding species but also the impact of soil‐feeding species on soil physical properties was revealed. Correlogram analysis on the first axis extracted in the CoIA showed the scale of the common structure shared by the fauna and soil variable tables. The earthworm community was not deterministically structured by competition and co‐occurrence of competing species was facilitated by soil environmental heterogeneity at small scales in the GF. Our results agreed with the coexistence aggregation model which suggests that spatial aggregation of competitors at patchily distributed resources (environment) can facilitate species coexistence.  相似文献   

4.
空间尺度是影响我们理解生态学格局和过程的关键因素.目前已有多种关于物种多样性分布格局形成机制的假说且研究者未达成共识,原因之一是空间尺度对物种多样性分布格局的环境影响因子的解释力和相对重要性有重要影响.地形异质性是物种多样性分布格局的重要影响因素.本文综述了在地形异质性-物种多样性关系的研究中,不同空间粒度和幅度对研究...  相似文献   

5.
Understanding the spatial patterns of species distribution is essential to characterize the structure of communities, to optimize species inventories and to evaluate the impact of biotic and abiotic variables. Here we describe the spatial structure of the distribution of leaf litter ant species, and of biotic factors that could explain it, in a subtropical semi-deciduous forest of the Argentinian Chaco, characterized by a dense understorey of shrubs and terrestrial bromeliads. Environmental variables (leaf litter quantity and ground bromeliad density) were measured and ants were collected in 1 m2 quadrats distributed along two 200 m transects at intervals of 1.25 m. Overall 87 species were collected. Sixteen positive associations and a single negative association were observed between the 11 most frequent species taken pair-wise. Our results suggest that the spatial distribution of leaf litter ants was determined at two different scales. At a small scale (period below 10 m) a periodic spatial structure, likely due to intraspecific competition, produced a succession of peaks of abundance separated by gaps. At a larger scale (period around 50 m), periodically distributed environmental factors induced aggregates of colonies of species responding positively to these factors. A high quantity of leaf litter and, to a lesser extent, a high density of ground bromeliads promoted a high density and a high species richness of ants. Numerically dominant ants being generally positively associated, interspecific competition was apparently weak. All ant species whose abundance was correlated with an environmental factor were not completely spatially structured by it. This suggests that some other factors, such as intraspecific competition, may have counter-effects. Received 14 March 2005; revised 26 April 2005; accepted 10 May 2005.  相似文献   

6.
Spatial variation in population densities across a landscape is a feature of many ecological systems, from self-organised patterns on mussel beds to spatially restricted insect outbreaks. It occurs as a result of environmental variation in abiotic factors and/or biotic factors structuring the spatial distribution of populations. However the ways in which abiotic and biotic factors interact to determine the existence and nature of spatial patterns in population density remain poorly understood. Here we present a new approach to studying this question by analysing a predator–prey patch-model in a heterogenous landscape. We use analytical and numerical methods originally developed for studying nearest-neighbour (juxtacrine) signalling in epithelia to explore whether and under which conditions patterns emerge. We find that abiotic and biotic factors interact to promote pattern formation. In fact, we find a rich and highly complex array of coexisting stable patterns, located within an enormous number of unstable patterns. Our simulation results indicate that many of the stable patterns have appreciable basins of attraction, making them significant in applications. We are able to identify mechanisms for these patterns based on the classical ideas of long-range inhibition and short-range activation, whereby landscape heterogeneity can modulate the spatial scales at which these processes operate to structure the populations.  相似文献   

7.
The major processes generating pattern in plant community composition depend upon the spatial scale and resolution of observation, therefore understanding the role played by spatial scale on species patterns is of major concern. In this study, we investigate how well environmental (topography and soil variables) and spatial variables explain variation in species composition in a 25-ha temperate forest in northeastern China. We used new variation partitioning approaches to discover the spatial scale (using multi-scale spatial PCNM variables) at which environmental heterogeneity and other spatially structured processes influence tree community composition. We also test the effect of changing grain of the study (i.e. quadrat size) on the variation partitioning results. Our results indicate that (1) species composition in the Changbai mixed broadleaf-conifer forest was controlled mainly by spatially structured soil variation at broad scales, while at finer scales most of the explained variation was of a spatial nature, pointing to the importance of biotic processes. (2) These results held at all sampling grains. However, reducing quadrat size progressively reduced both spatially and environmentally explained variance. This probably partly reflects increasing stochasticity in species abundances, and the smaller proportion of quadrats occupied by each species, when quadrat size is reduced. The results suggest that environmental heterogeneity (i.e. niche processes) and other biotic processes such as dispersal work together, but at different spatial scales, to build up diversity patterns.  相似文献   

8.
Environmental gradients are caused by gradual changes in abiotic factors, which affect species abundances and distributions, and are important for the spatial distribution of biodiversity. One prominent environmental gradient is the altitude gradient. Understanding ecological processes associated with altitude gradients may help us to understand the possible effects climate change could have on species communities. We quantified vegetation cover, species richness, species evenness, beta diversity, and spatial patterns of community structure of vascular plants along altitude gradients in a subarctic mountain tundra in northern Sweden. Vascular plant cover and plant species richness showed unimodal relationships with altitude. However, species evenness did not change with altitude, suggesting that no individual species became dominant when species richness declined. Beta diversity also showed a unimodal relationship with altitude, but only for an intermediate spatial scale of 1 km. A lack of relationships with altitude for either patch or landscape scales suggests that any altitude effects on plant spatial heterogeneity occurred on scales larger than individual patches but were not effective across the whole landscape. We observed both nested and modular patterns of community structures, but only the modular patterns corresponded with altitude. Our observations point to biotic regulations of plant communities at high altitudes, but we found both scale dependencies and inconsistent magnitude of the effects of altitude on different diversity components. We urge for further studies evaluating how different factors influence plant communities in high altitude and high latitude environments, as well as studies identifying scale and context dependencies in any such influences.  相似文献   

9.
While water and sediment microbial communities exhibit pronounced spatio-temporal patterns in freshwater lakes, the underlying drivers are yet poorly understood. Here, we evaluated the importance of spatial and temporal variation in abiotic environmental factors for bacterial and microeukaryotic community assembly and distance–decay relationships in water and sediment niches in Hongze Lake. By sampling across the whole lake during both Autumn and Spring sampling time points, we show that only bacterial sediment communities were governed by deterministic community assembly processes due to abiotic environmental drivers. Nevertheless, consistent distance–decay relationships were found with both bacterial and microeukaryotic communities, which were relatively stable with both sampling time points. Our results suggest that spatio-temporal variation in environmental factors was important in explaining mainly bacterial community assembly in the sediment, possibly due lesser disturbance. However, clear distance–decay patterns emerged also when the community assembly was stochastic. Together, these results suggest that abiotic environmental factors do not clearly drive the spatial structuring of lake microbial communities, highlighting the need to understand the role of other potential drivers, such as spatial heterogeneity and biotic species interactions.  相似文献   

10.
Treeline represents not only an important physiognomic boundary but also an important transition between disjunct mesoclimates and environmental limitations on establishment of tree species. The circumboreal treeline is controlled by some still to be understood physiological mechanism dependent on air temperatures, though younger life stages are increasingly influenced by numerous other biotic and abiotic factors at finer spatial and temporal scales. The goal of this study was to evaluate environmental and reproductive characteristics across treeline around Churchill, Manitoba, and to determine which factors are most important for successful seedling establishment by tamarack, white spruce and black spruce. We examined mid-winter snowpack, soil characteristics, seed viability, seedling establishment, and dominant vegetation at sites within forest and at treeline. Growing season was longer at treeline due to less snow accumulation, though soil temperatures were more variable throughout the year when compared with forest. Conifer seed germination was greater than 88% for most of the region and total seedling density was relatively consistent between sites. Seedlings were negatively associated with other plants within the forest, but low stature vegetation seemed to facilitate establishment at treeline. The associations between seedling establishment and habitat availability observed at several sites suggest that treeline advance in the Churchill area could be contingent on the facilitative effects of plants at and beyond treeline. The results of this study support the premise that fine-scale biotic and abiotic patterns and processes such as snowpack and facilitation by neighboring vegetation certainly cannot be overlooked in analyses of patterns at treeline in a changing Subarctic.  相似文献   

11.
It has been suggested that a heterogeneous environment enhances species richness and allows for the coexistence of species. However, there is increasing evidence that environmental heterogeneity can have no effect or even a negative effect on plant species richness and plant coexistence at a local scale. We examined whether plant species richness increases with local heterogeneity in the water table depth, microtopography, pH and light availability in a swamp forest community at three local spatial scales (grain: 0.6, 1.2 and 11.4 m). We also used the variance partitioning approach to assess the relative contributions of niche-based and other spatial processes to species occurrence. We found that heterogeneity in microtopography and light availability positively correlated with species richness, in accordance with the habitat heterogeneity hypothesis. However, we recorded different heterogeneity-diversity relationships for particular functional species groups. An increase in the richness of bryophytes and woody plant species was generally related to habitat heterogeneity at all measured spatial scales, whereas a low impact on herbaceous species richness was recorded only at the 11.4 m scale. The distribution of herbaceous plants was primarily explained by other spatial processes, such as dispersal, in contrast to the occurrence of bryophytes, which was better explained by environmental factors. Our results suggest that both niche-based and other spatial processes are important determinants of the plant composition and species turnover at local spatial scales in swamp forests.  相似文献   

12.
Aims Deserts are one of the ecosystems most sensitive to global climate change. However, there are few studies examining how changing abiotic and biotic factors under climate change will affect plant species diversity in the temperate deserts of Asia. This study aimed to: (i) characterize species distributions and diversity patterns in an Asian temperate desert; and (ii) to quantify the effects of spatial and environment variables on plant species diversity.Methods We surveyed 61 sites to examine the relationship between plant species diversity and several spatial/environmental variables in the Gurbantunggut Desert. Spatial and environmental variables were used to predict plant species diversity in separate multiple regression and ordination models. Variation in species responses to spatial and environmental conditions was partitioned by combining these variables in a redundancy analysis (RDA) and by creating multivariate regression trees (MRT).Important findings We found 92 plant species across the 61 sites. Elevation and geographic location were the dominant environmental factors underlying variation in site species richness. A RDA indicated that 93% of the variance in the species–environment relationships was explained by altitude, latitude, longitude, precipitation and slope position. Precipitation and topographic heterogeneity, through their effects on water availability, were more important than soil chemistry in determining the distribution of species. MRT analyses categorized communities into four groups based on latitude, soil pH and elevation, explaining 42.3% of the standardized species variance. Soil pH strongly influenced community composition within homogeneous geographic areas. Our findings suggest that precipitation and topographic heterogeneity, rather than edaphic heterogeneity, are more closely correlated to the number of species and their distributions in the temperate desert.  相似文献   

13.
Species’ ranges are complex often exhibiting multidirectional shifts over space and time. Despite the strong fingerprint of recent historical climate change on species’ distributions, biotic factors such as loss of vegetative habitat and the presence of potential competitors constitute important yet often overlooked drivers of range dynamics. Furthermore, short‐term changes in environmental conditions can influence the underlying processes of local extinction and local colonization that drive range shifts, yet are rarely considered at broad scales. We used dynamic state‐space occupancy models to test multiple hypotheses of the relative importance of major drivers of range shifts of Golden‐winged Warblers (Vermivora chrysoptera) and Blue‐winged Warblers (V. cyanoptera) between 1983 and 2012 across North America: warming temperatures; habitat changes; and occurrence of congeneric species, used here as proxy for biotic interactions. Dynamic occupancies for both species were most influenced by spatial relative to temporal variation in temperature and habitat. However, temporal variation in temperature anomalies and biotic interactions remained important. The two biotic factors considered, habitat change and biotic interactions, had the largest relative effect on estimated extinction rates followed by abiotic temperature anomalies. For the Golden‐winged Warbler, the predicted presence of the Blue‐winged Warbler, a hypothesized competitor, most influenced extinction probabilities, contributing to evidence supporting its role in site‐level species replacement. Given the overall importance of biotic factors on range‐wide dynamic occupancies, their consideration alongside abiotic factors should not be overlooked. Our results suggest that warming compounds the negative effect of habitat loss emphasizing species’ need for habitat to adapt to a changing climate. Notably, even closely related species exhibited individual responses to abiotic and biotic factors considered.  相似文献   

14.
Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub‐disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species’ presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change.  相似文献   

15.
Quantifying spatial patterns of species richness and determining the processes that give rise to these patterns are core problems In blodlveralty theory. The aim of the present paper was to more accurately detect patterns of vascular species richness at different scales along altitudinal gradients in order to further our understanding of biodlverslty patterns and to facilitate studies on relationships between biodiversity and environmental factors. Species richness patterns of total vascular plants species, including trees, shrubs, and herbs, were measured along an altitudinal gradient on one transect on a shady slope in the Dongling Mountains, near Beijing,China. Direct gradient analysis, regression analysis, and geostatistics were applied to describe the spatial patterns of species richness. We found that total vascular species richness did not exhibit a linear pattern of change with altitude, although species groups with different ecological features showed strong elevational patterns different from total species richness. In addition to total vascular plants, analysis of trees, shrubs, and herbs demonstrated remarkable hierarchical structures of species richness with altitude (i.e. patchy structures at small scales and gradients at large scales). Species richness for trees and shrubs had similar spatial characteristics at different scales, but differed from herbs. These results indicated that species groups with similar ecological features exhibit similar biodlveraity patterns with altitude, and studies of biodiversity based on species groups with similar ecological properties or life forms would advance our understanding of variations in species diversity. Furthermore, the gradients or trends appeared to be due mainly to local variations in species richness means with altitude. We also found that the range of spatial scale dependencies of species richness for total vascular plants, trees, shrubs, and herbs was relatively large. Thus, to detect the relationships betweenspecies richness with environmental factors along altitudinal gradients, it was necessary to quantify the scale dependencies of environmental factors in the sampling design or when establishing non-linear models.  相似文献   

16.
通过对山西灵空山小蛇沟集水区的林下草本层植物群落进行调查和多元分析——TWINSPAN分类、典范对应分析(CCA)与生境、生物因素变量分离, 探讨林分水平上草本层物种分布与环境因子之间的关系。结果如下: 1) TWINSPAN将26个调查样方划分为6种群落类型: 以辽东栎(Quercus wutaishanica)为主的辽东栎-油松(Pinus tabulaeformis)林型、辽东栎杂木林型、辽东栎林型、华北落叶松(Larix principis-rupprechtii)林型、油松林和阔叶油松林型、油松-辽东栎均匀混交林型, 体现了该地区地带性植被类型为暖温带森林的特点。2)群落类型的划分与CCA的结果相吻合, 主要反映了CCA排序第一、二轴的环境梯度, CCA排序轴第一轴突出反映了林分类型与土壤养分梯度, 第二排序轴与坡度、坡位显著相关。Monte Carlo检验结果表明, 林分类型、土壤养分和坡度是影响小蛇沟集水区内林下草本物种分异的最主要的环境因子。3)生境因子与生物因子解释了物种格局变化的42.9%, 其中生境因子占31.8%, 生物因子占7.9%, 生境因子与生物因子交互作用解释部分占3.2%。良好的环境解释反映了调查取样和环境因子选取的合理性。对于50%以上未能被解释的变异部分, 可能归咎于未被选取的因子如干扰或者随机过程。4)在海拔梯度较小的山区, 坡向等小地形因子能较好地指示局部生境的小气候条件, 对林下植物的分布有较好的解释力。  相似文献   

17.
18.
1. Characterisation of biodiversity is typically based on taxonomic approaches, while much less is known about other related aspects. Functional trait diversity is one such component of biodiversity that has not been addressed rigorously in ecological research until recently. We tested the congruence between taxonomic‐ and trait‐based approaches, and examined how spatial configuration, local abiotic environmental factors and biotic effects interact to influence taxonomic‐ and trait‐based characterisation of freshwater fish assemblages. 2. Fish assemblage data were compiled for 124 lakes in southern Finland. Variance partitioning in both linear regression analyses and redundancy analysis was used to quantify the relative contribution of spatial and environmental variables to taxonomic and functional trait diversity and structure. Additionally, a null model analysis was used to test for the potential effects of interspecific segregation and biotic interactions on the co‐occurrence of species. 3. The species pool was relatively poor. However, trait‐based classification of species indicated that most species belonged to unique functional entities, which suggested low redundancy in species composition. Correlation analysis indicated a very strong relationship between species richness (SR) and the number of unique trait combinations (UTC). Ecoregion‐level heterogeneity in SR and UTC were well represented in a relatively small group of randomly selected lakes (c. 30 lakes). Multiple regressions indicated moderate roles for abiotic environmental variables (i.e. lake surface area, depth, total phosphorous, colour and pH) in determining SR, UTC and the distribution of single trait categories, whereas geographical location was not generally influential. 4. Redundancy analysis revealed similar patterns to those of diversity analyses for taxonomic and associated trait‐based structure, emphasising the effect of abiotic environmental variables and the negligible effect of geographical position. 5. Co‐occurrence analysis indicated significant checkerboard distribution at the whole assemblage level, but interspecific segregation proved to be of relatively minor importance in the constrained analyses, where species pair combinations within trait category groups were evaluated. 6. Our results suggest that taxonomic‐ and trait‐based patterns of boreal lake fish assemblages are strongly interrelated. Environmental filtering through the effects of local abiotic variables seems to have the most prominent role in determining trait‐based assemblage patterns among lakes, which may also be secondarily shaped by biotic interactions. 7. From the applied perspective, it may not necessarily matter whether traditional taxonomic or more novel trait‐based approaches are used in characterising spatial patterns in boreal fish assemblages. However, trait‐based approaches may provide complementary information which cannot be directly revealed by taxonomic data.  相似文献   

19.
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.  相似文献   

20.
Spatial heterogeneity in species abundance arises from both extrinsic (largely abiotic) and intrinsic (largely biotic) processes. The relative importance of these two types of processes can vary across ecological systems and across temporal and spatial scales. Numerous empirical studies have explored spatial patterns resulting from extrinsic and intrinsic processes, however the interaction of these two types of processes can result in complex patterns that are difficult to test. We used a unique model system consisting of periphytic algae grown on agar in an experimental stream to manipulate an extrinsic and an intrinsic process. We manipulated an extrinsic process by varying the spatial arrangement of nutrients creating both heterogeneous and homogeneous environments for the algae. We manipulated an intrinsic process by introducing a snail herbivore to the system. The resulting spatial algal patterns showed that both types of processes were important in producing spatial abundance patterns and that the patterns occurred at two distinct spatial scales in our system. At the scale of the imposed nutrient heterogeneity, algae “tracked” the differences in nutrient supply rates. The snail herbivores both reduced and promoted spatial patterns in algal abundance at different spatial scales reflecting their species-specific foraging behavior. An ability to detect differences in algal abundance allowed the snails to reduce the power of patterns at the scale of the imposed nutrient heterogeneity; however below a spatial scale of approximately 30 mm the snails could no longer detect differences in algal abundance and so foraged randomly. At this spatial scale the spatial heterogeneity in algal abundance increased and the resulting algal patterns were relatively spatially fixed through time. We suggest that this relative constancy may arise in part from a detected weak Allee effect in algal growth rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号