首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the mutation mechanism of purine transition in DNA damaged with methoxyamine, a DNA dodecamer with the sequence d(CGCGAATTmo(4)CGCG), where mo(4)C is 2'-deoxy-N(4)-methoxycytidine, has been synthesized and its crystal structure determined. Two dodecamers form a B-form duplex. Electron density maps clearly show that one of the two mo(4)C residues forms a pair with a guanine residue of the opposite strand, the geometry being the canonical Watson-Crick type, and that the other mo(4)C residue forms a wobble pair with the opposite guanine residue. These two pairings are ascribed to the tautomerization of the methoxylated cytosine moieties between the amino and imino forms.  相似文献   

2.
In a series of structural studies on damaged DNA, a modified Dickerson-Drew dodecamer with the sequence d(CGCGAATTmo(4)CGCG), where mo(4)C is 2'-deoxy-N(4)-methoxycytidine, was synthesized and its structure in a new crystal form has been determined by the X-ray diffraction method. The two dodecamers form a B-form duplex, in which the two mo(4)C residues, respectively, form a wobble pair and a Watson-Crick type pair with the guanine residues of the opposite strand. A comparison of the sugar conformations with those of the other related Dickerson-Drew dodecamers indicates a common feature of their puckering patterns. The sugar pucker of the third residue always adopts an intermediate state (C4'-exo-O4'-endo) between the A-form and B-form. This deviation is ascribed to the stacking interaction of the ribose ring at the third residue with the guanine base at the 12th residue, which is brought about by an extra G12:G2 interaction between two duplexes related by a crystallographic 2(1) symmetry.  相似文献   

3.
The crystal structure of DNA dodecamer with the sequence of d(CGCAAATTXGCG), where X is 2'-deoxy-N4-methoxycytidine, has been determined by X-ray analysis. The dodecamers form a double helix with B-form conformation. The electron density indicates that the two modified cytosine bases respectively make a pair with the adenine bases on the opposite strand in a manner of Watson-Crick geometry and that the methoxy groups are in anti conformation to the N3 atom.  相似文献   

4.
Oxyamines such as hydroxylamine and methoxylamine disturb DNA replication and act as potent mutagens, causing nucleotide transition from one purine to another or one pyrimidine to another. In order to investigate mismatch base-pairing in DNA damaged with oxyamines, a dodecamer with the sequence d(CGCGmo(6)AATCCGCG), where mo(6) A is 2'-deoxy-N(6)-methoxyadenosine, was synthesized and its crystal structure determined. No significant conformational changes are found between the present dodecamer and the original undamaged B-form dodecamer. Electron density maps clearly show that the mo(6)A residue forms a base-pair with a 2'-deoxycytidine residue through hydrogen bonds similar to a Watson-Crick G.C base-pair. For these hydrogen bonds to be made, N(6)-methoxyadenine must chemically take the imino form. The methoxylation thus enables the adenine base to mimic a guanine base. As a result, misincorporation of 2'-deoxycytidine instead of thymidine, or 2'-deoxyadenosine instead of 2'-deoxyguanosine, can occur in DNA replication.  相似文献   

5.
In a previous paper, 2'-deoxy-N(6)-methoxyadenosine (mo(6)A) was shown to form a mismatch base-pair with 2'-deoxycytidine with a Watson-Crick-type geometry. To fully understand the structural basis of genetic mutations with damaged DNA, it is necessary to examine whether the methoxylated adenine residue still has the ability to form the regular Watson-Crick pairing with a thymine residue. Therefore, a DNA dodecamer with the sequence d(CGCGmo(6)AATTCGCG) has been synthesized and its crystal structure determined. The methoxylation has no significant effect on the overall DNA conformation, which is that of a standard B-form duplex. The methoxylated adenine moieties adopt the amino tautomer with an anti conformation around the C(6)-N(6) bond to the N(1) atom, and they form a Watson-Crick base-pair with thymine residues on the opposite strand, similar to an unmodified adenine residue. It is concluded that methoxylated adenine can present two alternate faces for base-pairing, thanks to the amino<-->imino tautomerism allowed by methoxylation. Based on this property, two gene transition routes are proposed.  相似文献   

6.
We reported previously on NMR studies of (Y+)n.(R+)n(Y-)n DNA triple helices containing one oligopurine strand (R)n and two oligopyrimidine strands (Y)n stabilized by T.AT and C+.GC base triples [de los Santos, C., Rosen, M., & Patel, D. J. (1989) Biochemistry 28, 7282-7289]. Recently, it has been established that guanosine can recognize a thymidine.adenosine base pair to form a G.TA triple in an otherwise (Y+)n.(R+)n(Y-)n triple-helix motif. [Griffin, L. C., & Dervan, P. B. (1989) Science 245, 967-971]. The present study extends the NMR research to the characterization of structural features of a 31-mer deoxyoligonucleotide that folds intramolecularly into a 7-mer (Y+)n.(R+)n(Y-)n triplex with the strands linked through two T5 loops and that contains a central G.TA triple flanked by T.AT triples. The G.TA triplex exhibits an unusually well resolved and narrow imino and amino exchangeable proton and nonexchangeable proton spectrum in H2O solution, pH 4.85, at 5 degrees C. We have assigned the imino protons of thymidine and amino protons of adenosine involved in Watson-Crick and Hoogsteen pairing in T.AT triples, as well as the guanosine imino and cytidine amino protons involved in Watson-Crick pairing and the protonated cytidine imino and amino protons involved in Hoogsteen pairing in C+.GC triples in the NOESY spectrum of the G.TA triplex. The NMR data are consistent with the proposed pairing alignment for the G.TA triple where the guanosine in an anti orientation pairs through a single hydrogen bond from one of its 2-amino protons to the 4-carbonyl group of thymidine in the Watson-Crick TA pair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Deoxyguanosine residues are hydroxylated by reactive oxygen species at the C-8 position to form 8-hydroxy-2'-deoxyguanosine (8-OG), one of the most important mutagenic lesions in DNA. Though the spontaneous G:C to C:G transversions are rare events, the pathways leading to this mutation are not established. An 8-OG:G mispair, if not corrected by DNA repair enzymes, could lead to G:C to C:G transversions. NMR spectroscopy and restrained molecular dynamics calculations are used to refine the solution structure of the base mismatch formed by the 8-OG:G pair on a self complementary DNA dodecamer duplex d(CGCGAATT(8-O)GGCG)(2). The results reveal that the 8-OG base is inserted into the helix and forms Hoogsteen base-pairing with the G on the opposite strand. The 8-OG:G base-pairs are seen to be stabilized by two hydrogen bonding interactions, one between the H7 of the 8-OG and the O6 of the G, and a three-center hydrogen bonding between the O8 of the 8-OG and the imino and amino protons of the G. The 8-OG:G base-pairs are very well stacked between the Watson-Crick base-paired flanking bases. Both strands of the DNA duplex adopt right-handed conformations. All of the unmodified bases, including the G at the lesion site, adopt anti glycosidic torsion angles and form Watson-Crick base-pairs. At the lesion site, the 8-OG residues adopt syn conformations. The structural studies demonstrate that 8-OG(syn):G(anti) forms a stable pair in the interior of the duplex, providing a basis for the in vivo incorporation of G opposite 8-OG. Calculated helical parameters and backbone torsional angles, and the observed 31P chemical shifts, indicate that the structure of the duplex is perturbed near lesion sites, with the local unwinding of the double helix. The melting temperature of the 8-OG:G containing duplex is only 2.6 deg. C less than the t(m) of the unmodified duplex.  相似文献   

8.
The crystal structure of the dodecamer, d(CGCIAATTCGCG), has been determined at 2.4 A resolution by molecular replacement, and refined to an R-factor of 0.174. The structure is isomorphous with that of the B-DNA dodecamer, d(CGCGAATTCGCG), in space group P2(1)2(1)2(1) with cell dimensions of a = 24.9, b = 40.4, and c = 66.4 A. The initial difference Fourier maps clearly indicated the presence of inosine instead of guanine. The structure was refined with 44 water molecules, and compared to the parent dodecamer. Overall the two structures are very similar, and the I:C forms Watson-Crick base pairs with similar hydrogen bond geometry to the G:C base pairs. The propeller twist angle is low for I4:C21 and relatively high for the I16:C9 base pair (-3.2 degrees compared to -23.0 degrees), and the buckle angles alter, probably due to differences in the contacts with symmetry related molecules in the crystal lattice. The central base pairs of d(CGCIAATTCGCG) show the large propeller twist angles, and the narrow minor groove that characterize A-tract DNA, although I:C base pairs cannot form the major groove bifurcated hydrogen bonds that are possible for A:T base pairs.  相似文献   

9.
The conformational properties of the DNA duplex d(CGCGAATTGGCG)2, which contains two noncomplementary G.G base pairs, have been examined in aqueous solution by 1H and 31P NMR as a function of temperature. The G.G mismatch is highly destabilizing, with a Tm value 35 K below that observed for the native EcoRI dodecamer. The dodecamer appears symmetric in the NMR spectra and exists largely as an average B-type DNA conformation. However, the 1H and 31P NMR spectra give evidence of considerable conformational heterogeneity at the mismatched nucleotides and their nearest neighbors, which increases with increasing temperature. There is no evidence for a significant population of the syn purine conformation. The imino protons of the mispaired bases G4 and G9 are degenerate, resonate at high field, and exchange readily with solvent. These results indicate that the mispaired bases are only weakly hydrogen-bonded and are only partially stacked into the helix. On raising the temperature, the duplex shows increasing exchange between two or more conformations originating from the mismatch sites. However, these additional conformations maintain their Watson-Crick hydrogen bonding. The increase in chemical exchange is consistent with a quasimelting process for which the G.G sites provide local nuclei. Extensive modeling studies by dynamic annealing have confirmed that the G(anti).G(anti) conformation is favored and that the mispairs are poorly stacked within the helix. The results explain both the poor thermal stability and low hypochromicity of this duplex.  相似文献   

10.
J G Moe  I M Russu 《Biochemistry》1992,31(36):8421-8428
Proton nuclear magnetic resonance (NMR) spectroscopy is used to characterize the kinetics and energetics of base-pair opening in the dodecamers 5'-d(CGCGAATTCGCG)-3' and 5'-d(CGCGAATTTGCG)-3'. The latter dodecamer contains two symmetrical G.T mismatched base pairs. The exchange kinetics of imino protons is measured from resonance line widths and selective longitudinal relaxation times. For the G.T pair, the two imino protons (G-N1H and T-N3H) provide probes for the opening of each base in the mismatched pair. The lifetimes of individual base pairs in the closed state and the equilibrium constants for formation of the open state are obtained from the dependence of the exchange rates on the concentration of ammonia catalyst. The activation energies and standard enthalpy changes for base-pair opening are obtained from the temperature dependence of the lifetimes and equilibrium constants, respectively. The results indicate that the G.T mismatched pairs are kinetically and energetically destabilized relative to normal, Watson-Crick base pairs. The lifetimes of the G.T pairs are of the order of 1 ms or less, over the temperature range from 0 to 20 degrees C. The equilibrium constants for base-pair opening, at 20 degrees C, are increased up to 4000-fold, relative to those of normal base pairs. The energetic destabilization of the G.T base pairs is, at least in part, enthalpic in origin. The presence of the G.T mismatched base pairs destabilizes also neighboring base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The base analogue N4-methoxycytosine (mo4C) is ambivalent in its hydrogen-bonding potential, since it forms stable base-pairs with both adenine and guanine in oligomer duplexes. To investigate the base-pair geometry, the structure of d(CGCGmo4CG) has been determined by single-crystal X-ray diffraction techniques. The d(CGCGmo4CG)2 crystallized in a left-handed double helical structure (Z-type). Refinement using 2559 reflections between 10 and 1.7 A converged with a final R = 0.181 (Rw = 0.130) including 68 solvent molecules. The orthorhombic crystals are in the space group P2(1)2(1)2(1), with cell dimensions a = 18.17 A, b = 30.36 A, c = 43.93 A. The mo4C.G base-pair is of the wobble type, with mo4C in the imino form, and the methoxy group in the syn configuration.  相似文献   

12.
13.
The crystal structure of an alternating RNA octamer, r(guauaca)dC (RNA bases are in lower case while the only DNA base is in upper case), with two 3' overhang residues one of them a terminal deoxycytosine and the other a ribose adenine, has been determined at 2.2 A resolution. The refined structure has an Rwork 18.6% and Rfree 26.8%. There are two independent duplexes (molecules I and II) in the asymmetric unit cell, a = 24.95, b = 45.25 and c = 73.67 A, with space group P2(1)2(1)2(1). Instead of forming a blunt end duplex with two a+.c mispairs and six Watson-Crick base-pairs, the strands in the duplex slide towards the 3' direction forming a two-base overhang (radC) and a six Watson-Crick base-paired duplex. The duplexes are bent (molecule I, 20 degrees; molecule II, 25 degrees) and stack head-to-head to form a right-handed superhelix. The overhang residues are looped out and the penultimate adenines of the two residues at the top end (A15) are anti and at the bottom (A7) end are syn. The syn adenine bases form minor groove A*(G.C) base triples with C8-H...N2 hydrogen bonds. The anti adenine in molecule II also forms a triple and a different C2-H...N3 hydrogen bond, while the other anti adenine in molecule I does not, it stacks on the looped out overhang base dC. The 3' terminal deoxycytosines form two stacked hemiprotonated trans d(C.C)+ base-pairs and the pseudo dyad related molecules form four consecutive deoxyribose and ribose zipper hydrogen bonds in the minor groove.  相似文献   

14.
Burkard ME  Turner DH 《Biochemistry》2000,39(38):11748-11762
Nucleotides in RNA that are not Watson-Crick-paired form unique structures for recognition or catalysis, but determinants of these structures and their stabilities are poorly understood. A single noncanonical pair of two guanosines (G) is more stable than other noncanonical pairs and can potentially form pairing structures with two hydrogen bonds in four different ways. Here, the energetics and structure of single GG pairs are investigated in several sequence contexts by optical melting and NMR. The data for r(5'GCAGGCGUGC3')(2), in which G4 and G7 are paired, are consistent with a model in which G4 and G7 alternate syn glycosidic conformations in a two-hydrogen-bond pair. The two distinct structures are derived from nuclear Overhauser effect spectroscopic distance restraints coupled with simulated annealing using the AMBER 95 force field. In each structure, the imino and amino protons of the anti G are hydrogen bonded to the O6 and N7 acceptors of the syn G, respectively. An additional hydrogen-bond connects the syn G amino group to the 5' nonbridging pro-R(p) phosphate oxygen. The GG pair fits well into a Watson-Crick helix. In r(5'GCAGGCGUGC3')(2), the G4(anti), G7(syn) structure is preferred over G4(syn), G7(anti). For single GG pairs in other contexts, exchange processes make interpretation of spectra more difficult but the pairs are also G(syn), G(anti). Thermodynamic data for a variety of duplexes containing pairs of G, inosine, and 7-deazaguanosine flanked by GC pairs are consistent with the structural and energetic interpretations for r(5'GCAGGCGUGC3')(2), suggesting similar GG conformations.  相似文献   

15.
O6-ethyl-G (e6G) is an important DNA lesion, caused by the exposure of cells to alkylating agents such as N-ethyl-N-nitrosourea. A strong correlation exists between persistence of e6G lesion and subsequent carcinogenic conversion. We have determined the three-dimensional structure of a DNA molecule incorporating the e6G lesion by X-ray crystallography. The DNA dodecamer d(CGC[e6G]AATTCGCG), complexed to minor groove binding drugs Hoechst 33258 or Hoechst 33342, has been crystallized in the space group P212121, isomorphous to other related dodecamer DNA crystals. In addition, the native dodecamer d(CGCGAATTCGCG) was crystallized with Hoechst 33342. All three new structures were solved by the molecular replacement method and refined by the constrained least squares procedure to R-factors of approximately 16% at approximately 2.0 A resolution. In the structure of three Hoechst drug-dodecamer complexes in addition to the one published earlier [Teng et al. (1988) Nucleic Acids Res., 16, 2671-2690], the Hoechst molecule lies squarely at the central AATT site with the ends approaching the G4-C21 and the G16-C9 base pairs, consistent with other spectroscopic data, but not with another crystal structure reported [Pjura et al. (1987) J. Mol. Biol., 197, 257-271]. The two independent e6G-C base pairs in the DNA duplex adopt different base pairing schemes. The e6G4-C21 base pair has a configuration similar to a normal Watson-Crick base pair, except with bifurcated hydrogen bonds between e6G4 and C21, and the ethyl group is in the proximal orientation. In contrast, the e6G16-C9 base pair adopts a wobble configuration and the ethyl group is in the distal orientation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Thermodynamic measurements are reported for 51 DNA duplexes with A.A, C.C, G.G, and T.T single mismatches in all possible Watson-Crick contexts. These measurements were used to test the applicability of the nearest-neighbor model and to calculate the 16 unique nearest-neighbor parameters for the 4 single like with like base mismatches next to a Watson-Crick pair. The observed trend in stabilities of mismatches at 37 degrees C is G.G > T.T approximately A.A > C.C. The observed stability trend for the closing Watson-Crick pair on the 5' side of the mismatch is G.C >/= C.G >/= A.T >/= T.A. The mismatch contribution to duplex stability ranges from -2.22 kcal/mol for GGC.GGC to +2.66 kcal/mol for ACT.ACT. The mismatch nearest-neighbor parameters predict the measured thermodynamics with average deviations of DeltaG degrees 37 = 3.3%, DeltaH degrees = 7. 4%, DeltaS degrees = 8.1%, and TM = 1.1 degrees C. The imino proton region of 1-D NMR spectra shows that G.G and T.T mismatches form hydrogen-bonded structures that vary depending on the Watson-Crick context. The data reported here combined with our previous work provide for the first time a complete set of thermodynamic parameters for molecular recognition of DNA by DNA with or without single internal mismatches. The results are useful for primer design and understanding the mechanism of triplet repeat diseases.  相似文献   

17.
In order to reach a more detailed understanding of the mechanism of the mutagenic action of methoxyamine and of N4-methoxycytidine and its 2'-deoxyribo-analogue, the solution structures of the self-complementary octanucleotide, d(CGAATTCG) and its analogues, d(CGAATCCG), d(CGAATMCG) and d(CGAATPCG) (designated 8mer-AT, 8mer-AC, 8mer-AM, and 8mer-AP, respectively), were investigated by 1H nuclear magnetic resonance spectroscopy; M is N4-methoxycytosine (mo4C) and P is an analogue, the bicyclic dihydropyrimido[4,5-c][1,2]oxazin-7-one, in which the N-O bond is held in the anti configuration with respect to N3 of the cytosine ring. Correlated spectroscopy and nuclear Overhauser spectroscopy allowed assignment of the base, anomeric and H2'/H2" protons in 8mers-AT, -AM and -AP, and showed that all three had features consistent with a regular B-DNA duplex structure. Duplex-to-coil transition temperatures were determined to be 52(+/- 2) degrees C (8mer-AT), 51(+/- 2) degrees C (8mer-AP), 32(+/- 2) degrees C (8mer-AM); on the chemical shift timescale, the melting transition was fast for 8mer-AT and 8mer-AP, but slow for 8mer-AM. Imino proton spectra were indicative of Watson-Crick base-pairing in 8mers-AT, -AP and -AM. The 8mer-AP duplex had a structure and melting characteristics virtually identical with those of the 8mer-AT duplex. The preferred syn configuration of the methoxyl group in M had a destabilising effect on the 8mer-AM duplex. At low temperatures, the A.M base-pair was in fast equilibrium between Watson-Crick and wobble configurations, with the methoxyl function anti-oriented, but the melting transition was accompanied by isomerization of the methoxyl group to the syn conformation. This syn-anti isomerization was the rate-determining step in the duplex-to-coil transition. The 8mer-AC oligomer did not form a stable duplex.  相似文献   

18.
The structure of guanosine-thymidine mismatches in B-DNA at 2.5-A resolution   总被引:14,自引:0,他引:14  
The structure of the deoxyoligomer d(C-G-C-G-A-A-T-T-T-G-C-G) was determined at 2.5-A resolution by single crystal x-ray diffraction techniques. The final R factor is 18% with the location of 71 water molecules. The oligomer crystallizes in a B-DNA-type conformation, with two strands interacting to form a dodecamer duplex. The double helix consists of four A X T and six G X C Watson-Crick base pairs and two G X T mismatches. The G X T pairs adopt a "wobble" structure with the thymine projecting into the major groove and the guanine into the minor groove. The mispairs are accommodated in the normal double helix by small adjustments in the conformation of the sugar phosphate backbone. A comparison with the isomorphous parent compound containing only Watson-Crick base pairs shows that any changes in the structure induced by the presence of G X T mispairs are highly localized. The global conformation of the duplex is conserved. The G X T mismatch has already been studied by x-ray techniques in A and Z helices where similar results were found. The geometry of the mispair is essentially identical in all structures so far examined, irrespective of the DNA conformation. The hydration is also similar with solvent molecules bridging the functional groups of the bases via hydrogen bonds. Hydration may be an important factor in stabilizing G X T mismatches. A characteristic of Watson-Crick paired A X T and G X C bases is the pseudo 2-fold symmetry axis in the plane of the base pairs. The G X T wobble base pair is pronouncedly asymmetric. This asymmetry, coupled with the disposition of functional groups in the major and minor grooves, provides a number of features which may contribute to the recognition of the mismatch by repair enzymes.  相似文献   

19.
20.
We have used nuclear magnetic resonance (NMR) spectroscopy to measure the lifetimes of individual base-pairs in the palindromic DNA oligonucleotide 5'-d(CGCGAATTCGCG)-3' and in three other dodecamers with symmetrical base substitutions in the sites underlined. The resonances of the hydrogen-bonded imino protons in each of the substituted oligomers in the duplex form have been assigned using one dimensional nuclear Overhauser effect (1-D NOE) experiments. The lifetimes have been obtained from the dependence of selective longitudinal relaxation times and linewidths of the imino proton resonances on the concentration of base catalyst (Tris) at 25 degrees C and in the presence of 50 mM NaCl. The lifetimes of the central A.T base-pairs have been found to depend on base sequence. They are greatly increased in the dodecamer 5'-d(CGCAAATTTGCG)-3' which contains an A3T3 tract. The lifetimes of the central A.T base-pairs in 5'-d(CGCGAATTCGCG)-3', 5'-d(CGCTAATTAGCG)-3' and 5'-d(CGCCAATTGGCG)-3' are comparable. In all dodecamers, the lifetime of the A.T base-pair at the 5'-end of the AnTn tract is the shortest. The anomalous opening kinetics of the A.T base-pairs can be correlated to the bending properties of the corresponding sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号