首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对虾转基因研究的现状和展望   总被引:5,自引:0,他引:5  
随着生物技术的发展,通过基因工程手段获得对虾新品种成为可能,然而经过十几年努力,目前对虾转基因研究依然处于初级阶段。各国科学家正在加紧研究,争取有所突破。综述了近年来国内外对虾转基因研究的进展以及目前面临的技术和安全问题,同时对未来对虾的转基因技术发展和应用前景进行了讨论 。  相似文献   

2.
3.
4.
Hydrogen (H2) is considered an alternative fuel of the future due to its high energy density and non-polluting nature. H2 energy provides many advantages over fossil fuels in that it is renewable, eco-friendly, and efficient. The global demand for H2 is increasing significantly; however, matching the supply of cost-competitive H2 to meet the current demand is a major technological barrier. H2 can be produced from lignocellulosic biomass and serve as a raw material for the synthesis of many industrially important chemicals. The use of thermophilic bacteria for biological production of H2 appears to be a promising alternative route to the current H2 production technologies. However, the carbon and H2 production metabolisms in most thermophilic bacteria have not yet been completely understood. This paper summarizes the recent research progress made toward understanding the carbon utilization for H2 production and developing gene manipulation techniques to enhance the H2 production capabilities in thermophilic bacteria. It reviews the current status, future directions and opportunities that thermophiles can offer to enable a cost-competitive and environmentally benign H2 production bioprocess.  相似文献   

5.
Gastric cancer (GC) is one of the major public health concerns. Long non-coding RNAs (lncRNAs) have been increasingly demonstrated to possess a strong correlation with GC and play a critical role in GC occurrence, progression, metastasis and drug resistance. Many studies have shed light on the understanding of the underlying mechanisms of lncRNAs in GC. In this review, we summarized the updated research about lncRNAs in GC, focusing on their roles in Helicobacter pylori infection, GC metastasis, tumor microenvironment regulation, drug resistance and associated signaling pathways. LncRNAs may serve as novel biomarkers for diagnosis and prognosis of GC and potential therapeutic targets. The research gaps and future directions were also discussed.  相似文献   

6.
Among the characterized 5-HT receptors of the central nervous system, the type 3 receptor subtype (5-HT3R) is the only one known to be a ligand-gated ion channel. Its early pharmacological characterization and mapping by radioligand binding autoradiography suggested that this receptor may, among other actions, regulate dopamine release in the nigro-striatal pathway and reduce alcohol consumption in experimental animals while antagonists of this receptor have been reported to treat anxiety disorders. Following the cloning of this receptor in 1991, direct cellular localization was made possible by in situ hybridization and immunohistochemical analysis. Here we summarize our recent efforts showing that 5-HT3R-expressing neurons are mainly GABA containing cells in the rat neocortex, olfactory cortex, hippocampus, and amygdala which also often contain chole-cystokinin (CCK) immunoreactivity. These results provide a means to unify some of the initial pharmacological observations.  相似文献   

7.
在ATP门控离子通道P2X受体家族中,P2X7受体由于在结构和功能上与其他(P2X1-P2X6)受体的显著差别而备受关注.P2X7受体是由3个同源亚基组成的多聚体,其C端为P2X受体家族中最长的,与其他已知蛋白没有同源性.P2X7受体具有独特的双功能性,被ATP激活后形成非选择性阳离子通道,允许钾、钠、钙等阳离子跨膜流动,而对二价阳离子表现出相对较强的选择性,在低浓度二价阳离子环境及ATP的持续刺激下,激活的P2X7受体能形成大的孔通道.P2X7受体广泛分布在血液系统、免疫系统和骨组织等多种组织器官中,通过信号转导参与细胞增殖、蛋白合成和细胞凋亡等事件.近年来在中枢神经系统中的研究发现,P2X7受体参与神经突触传递等生理过程,并在神经性退变等病理过程中发挥重要的调节作用.其中,多种假说支持它与少突胶质细胞的损伤有密切关系.  相似文献   

8.
腺苷的中枢作用   总被引:2,自引:0,他引:2  
腺苷是包括中枢神经系统(CNS)细胞外液在内的体液的正常组成成分,其正常水平为0.03~0.3μmol/L。ATP合成与分解失衡的条件下明显升高,如缺血时可升高1000倍之多。腺苷通过腺苷受体(adenodinereceptor,AR)对CNS具有多方面的生理与病理作用,被认为是CNS的抑制性神经调质,具有神经保护作用。  相似文献   

9.
10.
A Novel Subtype of Prostacyclin Receptor in the Central Nervous System   总被引:2,自引:0,他引:2  
Recently, in the course of our search for the prostacyclin receptor in the brain, we found a novel subtype, designated as IP2, which was finely discriminated by use of the specific ligand (15R)-16-m-tolyl-17,18,19,20-tetranorisocarbacyclin (15R-TIC) and specifically localized in the rostral part of the brain. In the present study, the tritiated compound 15R-[15-(3)H]TIC was synthesized and utilized for more specific research on IP2. The specificity of binding to rat brain regions was confirmed by use of several prostacyclin derivatives including 15S-TIC. Mapping of 15R- and 15S-[3H]TIC binding in adjacent pairs of frozen sections of rat brain demonstrated a quite similar pattern of distribution in almost all rostral brain regions, indicating that the regions may contain only the IP2 subtype. On the other hand, 15R-[3H]TIC binding was very faint as compared with 15S-[3H]TIC binding in the caudal medullary region. High densities of 15R-[3H]TIC binding sites were shown in the dorsal part of the lateral septal nucleus, thalamic nuclei, limbic structures, and some of the cortical regions. Scatchard plot analysis showed two components of high-affinity 15R-[3H]TIC binding in the rostral regions, one with a K(D) value at approximately 1 nM and the other with approximately 30 nM. These results strengthen our previous finding that a different subtype of prostacyclin receptor is expressed in the CNS, and the map with 15R-[3H]TIC obtained here could guide further studies on the molecular and functional properties of the IP2.  相似文献   

11.
12.
13.
Abstract

Adenosine receptor stimulation results in the selective enhancement or inhibition of histamine Hi receptor-evoked phosphoinositide turnover in cerebral cortex of guinea pig, mouse and man.  相似文献   

14.
Abstract

We have used a combination of sequence comparisons, computer-based modeling and site-directed mutagenesis to investigate the molecular interactions involved in ligand binding and signal transduction of the human 5-HT1B receptor. Two amino acid residues, S212 in transmembrane region (TM) V and F331 in TM VI, were replaced by alanines. These amino acids are conserved in many G protein-coupled receptors and therefore likely to be important for receptor function. The mutant receptors were expressed in Chinese hamster ovary cells. The 5-HT-like agonist 5-carboxamido-tryptamine (5-CT) bound with 15-fold lower affinity to the S212A mutant as compared to wild-type receptor and the antagonist methiothepin bound with 17-fold lower affinity to the F331A mutant. No reduction in the affinity of 5-HT was seen for the S212A mutant, although an equivalent mutation in the 5-HT1A receptor resulted in a 100-fold reduction of 5-HT binding. The inhibition of forskolin-stimulated cyclic AMP production by 5-HT was significantly reduced in cells expressing the F331A mutant, even though the endogenous ligand 5-HT bound with somewhat increased affinity. Methiothepin acted as an inverse agonist and increased the forskolin-stimulated cyclic AMP production at both the wild-type receptor and the mutants, and the effect was stronger on the F331A mutant. These results suggest that F331 is involved in the conformational changes necessary for signal transduction.  相似文献   

15.
16.
Extracellular nucleotides induce cellular responses in the central nervous system (CNS) through the activation of ionotropic P2X and metabotropic P2Y nucleotide receptors. Activation of these receptors regulates a wide range of physiological and pathological processes. In this review, we present an overview of the current literature regarding P2X and P2Y receptors in the CNS with a focus on the contribution of P2X7 and P2Y(2) receptor-mediated responses to neuroinflammatory and neuroprotective mechanisms.  相似文献   

17.
Matricellular proteins (MCPs) are actively expressed non-structural proteins present in the extracellular matrix, which rapidly turnover and possess regulatory roles, as well as mediate cell–cell interactions. MCPs characteristically contain binding sites for other extracellular proteins, cell surface receptors, growth factors, cytokines and proteases, that provide structural support for surrounding cells. MCPs are present in most organs, including brain, and play a major role in cell–cell interactions and tissue repair. Among the MCPs found in brain include thrombospondin-1/2, secreted protein acidic and rich in cysteine family (SPARC), including Hevin/SC1, Tenascin C and CYR61/Connective Tissue Growth Factor/Nov family of proteins, glypicans, galectins, plasminogen activator inhibitor (PAI-1), autotaxin, fibulin and perisostin. This review summarizes the potential role of MCPs in the pathogenesis of major neurological disorders, including Alzheimer’s disease, amyotrophic lateral sclerosis, ischemia, trauma, hepatic encephalopathy, Down’s syndrome, autism, multiple sclerosis, brain neoplasms, Parkinson’s disease and epilepsy. Potential therapeutic opportunities of MCP’s for these disorders are also considered in this review.  相似文献   

18.
More than half of human proteins are glycosylated by a bewildering array of complex and heterogeneous N- and O-linked glycans. They function in myriad biological processes, including cell adhesion and signalling and influence the physical characteristics, stability, function, activity and immunogenicity of soluble glycoproteins. A single protein may be glycosylated differently to yield heterogenous glycoforms. Glycosylation analysis is of increasing interest in biomedical and biological research, the pharmaceutical and healthcare industry and biotechnology. This is because it is increasingly apparent that glycosylation changes in diseases, such as cancer, making it a promising target for development of clinically useful biomarkers and therapeutics. Furthermore, as the non-human cells employed in expression systems glycosylate their proteins very differently to human cells, and as glycosylation changes unpredictably under changing environmental conditions, glycans analysis for quality control, optimum efficacy and safety of recombinant glycoproteins destined for human therapeutic use is paramount. The complexities of carbohydrate chemistry make analysis challenging and while there are a variety of robust methodologies available for glycan analysis, there is currently a pressing need for the development of new, streamlined, high throughput approaches accessible to non-specialist laboratories.  相似文献   

19.
Arachidonic acid and docosahexaenoic acid (DHA) released by the action of phospholipases A2 (PLA2) on membrane phospholipids may be metabolized by lipoxygenases to the anti-inflammatory mediators lipoxin A4 (LXA4) and resolvin D1 (RvD1), and these can bind to a common receptor, formyl-peptide receptor 2 (FPR2). The contribution of this receptor to axonal or dendritic outgrowth is unknown. The present study was carried out to elucidate the distribution of FPR2 in the rat CNS and its role in outgrowth of neuronal processes. FPR2 mRNA expression was greatest in the brainstem, followed by the spinal cord, thalamus/hypothalamus, cerebral neocortex, hippocampus, cerebellum and striatum. The brainstem and spinal cord also contained high levels of FPR2 protein. The cerebral neocortex was moderately immunolabelled for FPR2, with staining mostly present as puncta in the neuropil. Dentate granule neurons and their axons (mossy fibres) in the hippocampus were very densely labelled. The cerebellar cortex was lightly stained, but the deep cerebellar nuclei, inferior olivary nucleus, vestibular nuclei, spinal trigeminal nucleus and dorsal horn of the spinal cord were densely labelled. Electron microscopy of the prefrontal cortex showed FPR2 immunolabel mostly in immature axon terminals or ‘pre-terminals’, that did not form synapses with dendrites. Treatment of primary hippocampal neurons with the FPR2 inhibitors, PBP10 or WRW4, resulted in reduced lengths of axons and dendrites. The CNS distribution of FPR2 suggests important functions in learning and memory, balance and nociception. This might be due to an effect of FPR2 in mediating arachidonic acid/LXA4 or DHA/RvD1-induced axonal or dendritic outgrowth.  相似文献   

20.
Abstract

GABA-gated chloride channels in the central nervous system contain a regulatory site, the benzodiazepine receptor, through which drugs can modulate the efficiency of GABAergic synaptic transmission and thereby affect the degree of anxiety, muscle tension, vigilance and convulsions. The biochemical analysis of the purified receptor complex with monoclonal antibodies shows a heterooligomeric composition of two glycosylated subunits (α,β). The immunoprecipitated complex contains the binding sites for GABA, benzodiazepines and the convulsant TBPS. The receptor complex was located, immuno-cytochemically, in synapses of brain regions rich in GABAergic nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号