首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the composition of the marine-dissolved organic matter has highlighted the importance of d-amino acids, whose origin is attributed mainly to the remains of bacterial peptidoglycan released as a result of grazing or viral lysis. However, very few studies have focused on the active release of d-amino acids by bacteria. With this purpose, we measured the concentration of dissolved amino acids in both enantiomeric forms with two levels of complexity: axenic cultures of Vibrio furnissii and Vibrio alginolyticus and microcosms created from marine microbial assemblages (Biscay Bay, Cantabrian Sea) with and without heterotrophic nanoflagellates (HNFs). Axenic cultures showed that only d-Ala was significantly released and accumulated in the medium up to a concentration of 120 nM, probably as a consequence of the rearrangement of peptidoglycan. The marine microbial assemblages showed that only two d-amino acids significantly accumulated in the environment, d-Ala and d-aspartic acid (Asp), in both the absence and presence of HNFs. The d/l ratio increased during the incubation and reached maximum values of 3.0 to 4.3 for Ala and 0.4 to 10.6 for Asp and correlated with prokaryotic and HNF abundance as well as the rate of prokaryotic thymidine and leucine incorporation. Prokaryotes preferentially consumed l-amino acids, but the relative uptake rates of d-Ala significantly increased in the growth phase. These results demonstrate that bacteria can release and consume d-amino acids at high rates during growth, even in the absence of viruses and grazers, highlighting the importance of bacteria as producers of dissolved organic matter (DOM) in the sea.  相似文献   

2.
Previous work with Pseudomonas aeruginosa showed that catalase activity in biofilms was significantly reduced relative to that in planktonic cells. To better understand biofilm physiology, we examined possible explanations for the differential expression of catalase in cells cultured in these two different conditions. For maximal catalase activity, biofilm cells required significantly more iron (25 μM as FeCl3) in the medium, whereas planktonic cultures required no addition of iron. However, iron-stimulated catalase activity in biofilms was still only about one-third that in planktonic cells. Oxygen effects on catalase activity were also investigated. Nitrate-respiring planktonic cultures produced approximately twice as much catalase activity as aerobic cultures grown in the presence of nitrate; the nitrate stimulation effect could also be demonstrated in biofilms. Cultures fermenting arginine had reduced catalase levels; however, catalase repression was also observed in aerobic cultures grown in the presence of arginine. It was concluded that iron availability, but not oxygen availability, is a major factor affecting catalase expression in biofilms.  相似文献   

3.
选取100个与铜绿假单胞杆菌(Pseudomonas aeruginosa)群感效应(quorum-sensing,QS)相关的基因,克隆这些基因片段于pMD-18T载体,测序鉴定,点样制备cDNA基因芯片。制备cy3-dCTP/cy5-dCTP标记的探针,与芯片杂交。初步研究了处于不同生长期的铜绿假单胞杆菌基因的表达差异。指数中期和平台初期相比,有9个QS基因表达量最著增加,有6个基因表达量显著下降。利用芯片做针对铜绿菌假单胞杆菌药物的筛选:妥布霉素(Tobramycin)给药后细菌基因发生差异表达。证明了该cDNA芯片用于药物筛选的可行性。在国内首次研制开发了QS相关基因的cDNA芯片。应用基因芯片技术建立的铜绿假单胞杆菌QS相关基因研究平台,为找到能较好抑制铜绿假单胞杆菌正常生长的药物研究提出新的解决方法。  相似文献   

4.
Cytokinin oxidase/dehydrogenase proteins (CKX) are encoded by a multigene family of CKX genes with a varying number of members depending on species. For some of the genes, spectacular effects on grain production in selected cereals have been observed. Despite the fact that partial or full length sequences of most HvCKX genes in barley (Hordeum vulgare) have already been published, in most cases their specific biological functions have not been reported. Detailed expression patterns for five HvCKX genes in different organs/tissues of developing barley plants coupled with analysis of RNAi silent for two genes are presented to test the hypothesis that these expression profiles might indicate their function. Elevated expression for four of them – HvCKX1, HvCKX9, HvCKX4, and HvCKX11 – was found in developing kernels of wild-type plants compared to other tissues. HvCKX5 was mainly expressed in leaf tissue. Lower expression was noted for HvCKX1 in seedling roots and for HvCKX9 in leaves. The documented effect of RNAi silencing of HvCKX1 and a trend for HvCKX9 was higher plant productivity, and the trait was inherited through four generations. Higher plant yield was determined by higher numbers of seeds and spikes. Increased productivity was significantly greater in HvCKX1 silenced plants showing higher relative expression of HvCKX1 in developing kernels of wild-type plants compared to the expression of HvCKX9. Both HvCKX1 silenced T1 seedlings of cv. Golden Promise and the newly transformed breeding line STH7308 showed greater root mass, but this trait was not inherited in the next generation. Similarly HvCKX9 silenced T1 seedlings exhibited greater plant height without inheritance in the next generation. It is suggested that these effects were not inherited because of compensation by other genes co-ordinately regulating reproductive development. One line with untypically changed, inherited phenotype, which was selected from several dozen silenced lines showing stable and common phenotypes is presented.  相似文献   

5.
The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal.  相似文献   

6.
7.
Acyl-homoserine lactone (acyl-HSL) quorum sensing is common to many Proteobacteria including a clinical isolate of Burkholderia cepacia. The B. cepacia isolate produces low levels of octanoyl-HSL. We have examined an environmental isolate of Burkholderia vietnamiensis. This isolate produced several acyl-HSLs. The most abundant species was decanoyl-HSL. Decanoyl-HSL in B. vietnamiensis cultures reached concentrations in excess of 20 microM. We isolated a B. vietnamiensis DNA fragment containing a gene for the synthesis of decanoyl-HSL (bviI) and an open reading frame that codes for a putative signal receptor (bviR). A B. vietnamiensis bviI mutant did not produce detectable levels of decanoyl-HSL.  相似文献   

8.
9.
Despite an increased awareness of biofilm formation by pathogens and the role of biofilms in human infections, the potential role of environmental biofilms as an intermediate stage in the host-to-host cycle is poorly described. To initiate infection, pathogens in biofilms on inanimate environmental surfaces must detach from the biofilm and be transmitted to a susceptible individual in numbers large enough to constitute an infectious dose. Additionally, while detachment has been recognized as a discrete event in the biofilm lifestyle, it has not been studied to the same extent as biofilm development or biofilm physiology. Successful integration of Pseudomonas aeruginosa strain PA01 expressing green fluorescent protein (PA01GFP), employed here as a surrogate pathogen, into multispecies biofilm communities isolated and enriched from sink drains in public washrooms and a hospital intensive care unit is described. Confocal laser scanning microscopy indicated that PA01GFP cells were most frequently located in the deeper layers of the biofilm, near the attachment surface, when introduced into continuous flow cells before or at the same time as the multispecies drain communities. A more random integration pattern was observed when PA01GFP was introduced into established multispecies biofilms. Significant numbers of single PA01GFP cells were continuously released from the biofilms to the bulk liquid environment, regardless of the order of introduction into the flow cell. Challenging the multispecies biofilms containing PA01GFP with sub-lethal concentrations of an antibiotic, chelating agent and shear forces that typically prevail at distances away from the point of treatment showed that environmental biofilms provide a suitable habitat where pathogens are maintained and protected, and from where they are continuously released.  相似文献   

10.
本研究分析了铜绿假单胞菌噬菌体K5基因在宿主中的表达及其影响因素. 通过测定融合报告基因dnaP-lacZ、capP-lacZ、bapP-lacZ和rdr-lacZ编码的β 半乳糖苷酶活力,分析了噬菌体K5相关基因的表达水平,发现噬菌体K5的不同基因在宿主细胞内表达水平存在较大差异,其中噬菌体K5的DNA聚合酶基因dnaP的表达水平最高,而主要衣壳蛋白基因capP的表达水平最低. 加入噬菌体后,除二磷酸核糖核苷酸还原酶基因rnr外,其它基因的表达水平均有明显提高,说明噬菌体自身因子能够调控噬菌体部分基因在宿主细胞中的表达. 进一步分析显示,噬菌体基因在对数生长前期细胞中的表达水平显著高于平衡期. 同时,噬菌体感染对数生长前期的宿主菌,其释放量为12.8 PFU/感染中心,是平衡期释放量的9.2倍. 噬菌体以对数生长期宿主为指示菌时噬菌体的滴度为4.7×108 PFU/mL,而以平衡期宿主菌为指示菌噬菌体K5滴度仅能达到2.5×104 PFU/mL,噬菌体K5的裂解能力显著降低. 这些结果对研究噬菌体与宿主细胞的相互作用机制具有重要作用.  相似文献   

11.
12.
Biofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, bacterial polysaccharides and proteins, which are up to 1000-fold more antibiotic resistant than planktonic cultures. To date, extracellular DNA has been shown to function as a structural support to maintain Pseudomonas aeruginosa biofilm architecture. Here we show that DNA is a multifaceted component of P. aeruginosa biofilms. At physiologically relevant concentrations, extracellular DNA has antimicrobial activity, causing cell lysis by chelating cations that stabilize lipopolysaccharide (LPS) and the outer membrane (OM). DNA-mediated killing occurred within minutes, as a result of perturbation of both the outer and inner membrane (IM) and the release of cytoplasmic contents, including genomic DNA. Sub-inhibitory concentrations of DNA created a cation-limited environment that resulted in induction of the PhoPQ- and PmrAB-regulated cationic antimicrobial peptide resistance operon PA3552–PA3559 in P. aeruginosa. Furthermore, DNA-induced expression of this operon resulted in up to 2560-fold increased resistance to cationic antimicrobial peptides and 640-fold increased resistance to aminoglycosides, but had no effect on β-lactam and fluoroquinolone resistance. Thus, the presence of extracellular DNA in the biofilm matrix contributes to cation gradients, genomic DNA release and inducible antibiotic resistance. DNA-rich environments, including biofilms and other infection sites like the CF lung, are likely the in vivo environments where extracellular pathogens such as P. aeruginosa encounter cation limitation.  相似文献   

13.
14.
The failure of antibiotic therapies to clear Pseudomonas aeruginosa lung infection, the key mortality factor for cystic fibrosis (CF) patients, is partly attributed to the high tolerance of P. aeruginosa biofilms. Mannitol has previously been found to restore aminoglycoside sensitivity in Escherichia coli by generating a proton-motive force (PMF), suggesting a potential new strategy to improve antibiotic therapy and reduce disease progression in CF. Here, we used the commonly prescribed aminoglycoside tobramycin to select for P. aeruginosa persister cells during biofilm growth. Incubation with mannitol (10–40 mM) increased tobramycin sensitivity of persister cells up to 1,000-fold. Addition of mannitol to pre-grown biofilms was able to revert the persister phenotype and improve the efficacy of tobramycin. This effect was blocked by the addition of a PMF inhibitor or in a P. aeruginosa mutant strain unable to metabolise mannitol. Addition of glucose and NaCl at high osmolarity also improved the efficacy of tobramycin although to a lesser extent compared to mannitol. Therefore, the primary effect of mannitol in reverting biofilm associated persister cells appears to be an active, physiological response, associated with a minor contribution of osmotic stress. Mannitol was tested against clinically relevant strains, showing that biofilms containing a subpopulation of persister cells are better killed in the presence of mannitol, but a clinical strain with a high resistance to tobramycin was not affected by mannitol. Overall, these results suggest that in addition to improvements in lung function by facilitating mucus clearance in CF, mannitol also affects antibiotic sensitivity in biofilms and does so through an active, physiological response.  相似文献   

15.
The association of Cryptosporidium oocysts with biofilm communities can influence the propagation of this pathogen through both environmental systems and water treatment systems. We observed the capture and retention of C. parvum oocysts in Pseudomonas aeruginosa biofilms using laboratory flow cells. Biofilms were developed in two different growth media using two different strains of P. aeruginosa, a wild-type strain (PAO1) and a strain that overproduces the exopolysaccharide alginate (PDO300). Confocal laser-scanning microscopy was used in conjunction with image analysis to assess the structure of the biofilms prior to introducing oocysts into the flow cells. More oocysts were captured by the biofilm-coated surfaces than the abiotic glass surface in both media. There was no significant difference in capture across the two strains of P. aeruginosa biofilm, but the fraction of oocysts captured was positively related to biofilm roughness and surface-area-to-volume ratio. Once captured, oocysts were retained in the biofilm for more than 24 h and were not released after a 40-fold increase in the system flow rate. We believe the capture and retention of oocysts by biofilm communities can impact the environmental transmission of C. parvum, and this interaction should be taken into consideration when predicting the migration of pathogens in the environment.  相似文献   

16.
Current studies have indicated the utility of photodynamic therapy using porphyrins in the treatment of bacterial infections. Photoactivation of porphyrins results in the production of singlet oxygen (1O2) that damages biomolecules associated with cells and biofilms, e.g., proteins, polysaccharides, and DNA. The effect of a cationic porphryin on P. aeruginosa PAO1 biofilms was assessed by exposing static biofilms to 5,10,15,20-tetrakis(1-methyl-pyridino)-21H,23H-porphine, tetra-p-tosylate salt (TMP) followed by irradiation. Biofilms were visualized using confocal laser scanning microscopy (CLSM) and cell viability determined using the LIVE/DEAD BacLight viability assay and standard plate counts. At a concentration of 100 μM TMP, there was substantial killing of P. aeruginosa PAO1 wild-type and pqsA mutant biofilms with little disruption of the biofilm matrix or structure. Exposure to 225 μM TMP resulted in almost complete killing as well as the detachment of wild-type PAO1 biofilms. In contrast, pqsA mutant biofilms that contain less extracellular DNA remained intact. Standard plate counts of cells recovered from attached biofilms revealed a 4.1-log10 and a 3.9-log10 reduction in viable cells of wild-type PAO1 and pqsA mutant strains, respectively. Our results suggest that the action of photoactivated TMP on P. aeruginosa biofilms is two-fold: direct killing of individual cells within biofilms and detachment of the biofilm from the substratum. There was no evidence of porphyrin toxicity in the absence of light; however, biofilms pretreated with TMP without photoactivation were substantially more sensitive to tobramycin than untreated biofilms.  相似文献   

17.
Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (~10's s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity.  相似文献   

18.
19.
20.
Clustering of Functionally Related Genes in Pseudomonas aeruginosa   总被引:9,自引:4,他引:5       下载免费PDF全文
Genes for the mandelate and benzoate pathways in Pseudomonas aeruginosa are clustered to a greater degree than that predicted on the basis of the induction pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号