首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a study on metabolic consumption of photosynthetic electronsand dissipation of excess light energy under water stress, O2and CO2 gas exchange was measured by mass spectrometry in tomatoplants using 18O2 and 13CO2. Under water stress, gross O2 evolution(EO), gross O2 uptake (UO), net CO2 uptake (PN), gross CO2 uptake(TPS), and gross CO2 evolution (EC) declined. The ratio PN/EOfell during stress, while the ratios UO/EO and EC/TPS rose.Mitochondrial respiration in the light, which can be measureddirectly by 12CO2 evolution during 13CO2 uptake at 3000 µll–1 13CO2, is small in relation to gross CO2 evolutionand CO2 release from the glycolate pathway. It is concludedthat PSII, the Calvin cycle and mitochondrial respiration aredown-regulated under water stress. The percentages of photosyntheticelectrons dissipated by CO2 assimilation, photorespiration andthe Mehler reaction were calculated: in control leaves morethan 50 % of the electrons were consumed in CO2 assimilation,23 % in photorespiration and 13 % in the Mehler reaction. Undersevere stress the percentages of electrons dissipated by CO2assimilation and the Mehler reaction declined while the percentageof electrons used in photorespiration doubled. The consumptionof electrons in photorespiration may reduce the likelihood ofdamage during water deficit.  相似文献   

2.
The acclimation responses of walnut leaf photosynthesis to the irradiance microclimate were investigated by characterizing the photosynthetic properties of the leaves sampled on young trees (Juglans nigraxregia) grown in simulated sun and shade environments, and within a mature walnut tree crown (Juglans regia) in the field. In the young trees, the CO(2) compensation point in the absence of mitochondrial respiration (Gamma*), which probes the CO(2) versus O(2) specificity of Rubisco, was not significantly different in sun and shade leaves. The maximal net assimilation rates and stomatal and mesophyll conductances to CO(2) transfer were markedly lower in shade than in sun leaves. Dark respiration rates were also lower in shade leaves. However, the percentage inhibition of respiration by light during photosynthesis was similar in both sun and shade leaves. The extent of the changes in photosynthetic capacity and mesophyll conductance between sun and shade leaves under simulated conditions was similar to that observed between sun and shade leaves collected within the mature tree crown. Moreover, mesophyll conductance was strongly correlated with maximal net assimilation and the relationships were not significantly different between the two experiments, despite marked differences in leaf anatomy. These results suggest that photosynthetic capacity is a valuable parameter for modelling within-canopies variations of mesophyll conductance due to leaf acclimation to light.  相似文献   

3.
Diurnal time courses of net CO2 assimilation rates, stomatal conductance and light-driven electron fluxes were measured in situ on attached leaves of 30-year-old Turkey oak trees (Quercus cerris L.) under natural summer conditions in central Italy. Combined measurements of gas exchange and chlorophyll a fluorescence under low O2 concentrations allowed the demonstration of a linear relationship between the photochemical efficiency of PSII (fluorescence measurements) and the apparent quantum yield of gross photosynthesis (gas exchange). This relationship was used under normal O2 to compute total light-driven electron fluxes, and to partition them into fractions used for RuBP carboxylation or RuBP oxygenation. This procedure also yielded an indirect estimate of the rate of photorespiration in vivo. The time courses of light-driven electron flow, net CO2 assimilation and photorespiration paralleled that of photosynthetic photon flux density, with important afternoon deviations as soon as a severe drought stress occurred, whereas photochemical efficiency and maximal fluorescence underwent large but reversible diurnal decreases. The latter observation indicated the occurrence of a large non-photochemical energy dissipation at PSII. We estimated that less than 60% of the total photosynthetic electron flow was used for carbon assimilation at midday, while about 40% was devoted to photorespiration. The rate of carbon loss by photorespiration (R1) reached mean levels of 56% of net assimilation rates. The potential application of this technique to analysis of the relative contributions of thermal de-excitation at PSII and photorespiratory carbon recycling in the protection of photosynthesis against stress effects is discussed.  相似文献   

4.
Biehler K  Fock H 《Plant physiology》1996,112(1):265-272
Gross O2 evolution and uptake by attached, drought-stressed leaves of wheat (Triticum aestivum) were measured using a 16O2/ 18O2 isotope technique and mass spectrometry. The activity of photosystem II, determined from the rate of 16O2 evolution, is only slightly affected under drought conditions. During drought stress, net CO2 uptake decreases due to stomatal closure, whereas the uptake of 18O2 is stimulated. The main O2-consuming reactions in the light are the Mehler-peroxidase (MP) reaction and the photorespiratory pathway. From measurements of the rate of carbon flux through the photorespiratory pathway, estimated by the analysis of the specific radioactivities of glycolate, we conclude that the rate of photorespiration is decreased with drought stress. Therefore, the O2 taken up in the light appears to be preferentially used by the MP reaction. In stressed leaves, 29.1% of the photosynthetic electrons are consumed in the MP reaction and 18.4% drive the photorespiratory pathway. Thus, overreduction of the electron transport chain is avoided preferably by the MP reaction when drought stress restricts CO2 reduction.  相似文献   

5.
In CO2-free air, the CO2 postirradiation burst (PIB) in wheat leaves was measured with an IRGA in an open gas exchange system to ascertain its potential role in alleviating photoinhibition of photorespiratory carbon oxidation (PCO) under a CO2 deficiency. A pre-photosynthesized leaf having been transferred into CO2-free air exhibited a typical CO2 PIB following darkening which could last, with a rate substantially higher than that of dark respiration, over a long time period (at least more than 2 h) of continuously alternate irradiation (2 min)-dark (2 min)-light transitions. The rate and the time of PIB maintenance, although unaffected by the exogenous dark respiration inhibitor iodoacetic acid, were stimulated largely by increasing irradiance and O2 level, and suppressed by DCMU and N-ethyl-maleimide (NEM). They also showed a large photosynthates-loading dependence. In a darkened leaf, the irradiation-induced PIB in the CO2-free air was clearly revealed and it was characterized by an initial net uptake of respiratory CO2. The light-induced PIB was accelerated by increasing irradiance, and delayed by prolonging the period of darkening the leaves. Hence, the origin of carbon needed for a long-term CO2 evolution in the CO2-free air might not only be derived directly from the pool of intermediates in the Calvin cycle, but it might also arise indirectly from a remotely fixed reserve of photosynthates in the leaf via a PCO-mediated, yet to be further clarified, mobilization process. Such mobilization of photosynthates probably exerted an important role in coordination of photochemical reactions and carbon assimilation during photosynthesis in C3 plants under the photoinhibitory conditions.  相似文献   

6.
In higher plants, the mitochondrial electron transport chain has non-phosphorylating alternative pathways that include the alternative terminal oxidase (AOX). This alternative pathway has been suggested to act as a sink for dissipating excess reducing power, minimizing oxidative stress and possibly optimizing photosynthesis in response to changing conditions. The expression patterns of the AOX genes have been well characterized under different growth conditions, particularly in response to light and temperature stress. Additionally, it has been suggested that mitochondrial electron transport is important for avoiding chloroplast over-reduction and balancing energy partitioning among photosynthesis, photorespiration and respiration. Nonetheless, the role AOX plays in optimizing photosynthetic carbon metabolism is unclear. Therefore, the response of photosynthesis to the disruption of AOX was investigated in the Arabidopsis thaliana T-DNA mutant aox1a (SALK_084897). Gas exchange analysis revealed a lower net CO(2) assimilation rate (A) at high CO(2) concentrations in the aox1a mutant compared to wild type. This decrease in A was accompanied by a lower maximum electron transport rate and quantum yield of PSII, and higher excitation pressure on PSII and non-photochemical quenching. The aox1a mutant also exhibited a lower estimated rate of ribulose 1,5-bisphosphate regeneration, and the ribulose 1,5-bisphosphate content was lower at high CO(2) concentrations, suggesting an ATP limitation of the Calvin-Benson cycle. Additionally, the activity of the malate-oxaloacetate shuttle was lower in the mutant compared to wild type. These results indicate that AOX is important for optimizing rates of photosynthetic CO(2) assimilation in response to rising CO(2) concentration by balancing the NAD(P)H/ATP ratio and rates of ribulose 1,5-bisphosphate regeneration within the chloroplast.  相似文献   

7.
The cytoplasmic male sterile II (CMSII) mutant lacking complex I of the mitochondrial electron transport chain has a lower photosynthetic activity but exhibits higher rates of excess electron transport than the wild type (WT) when grown at high light intensity. In order to examine the cause of the lower photosynthetic activity and to determine whether excess electrons are consumed by photorespiration, light, and intercellular CO(2), molar fraction (c(i)) response curves of carbon assimilation were measured at varying oxygen molar fractions. While oxygen is the major acceptor for excess electrons in CMSII and WT leaves, electron flux to photorespiration is favoured in the mutant as compared with the WT leaves. Isotopic mass spectrometry measurements showed that leaf internal conductance to CO(2) diffusion (g(m)) in mutant leaves was half that of WT leaves, thus decreasing the c(c) and favouring photorespiration in the mutant. The specificity factor of Rubisco did not differ significantly between both types of leaves. Furthermore, carbon assimilation as a function of electrons used for carboxylation processes/electrons used for oxygenation processes (J(C)/J(O)) and as a function of the calculated chloroplastic CO(2) molar fraction (c(c)) values was similar in WT and mutant leaves. Enhanced rates of photorespiration also explain the consumption of excess electrons in CMSII plants and agreed with potential ATP consumption. Furthermore, the lower initial Rubisco activity in CMSII as compared with WT leaves resulted from the lower c(c) in ambient air, since initial Rubisco activity on the basis of equal c(c) values was similar in WT and mutant leaves. The retarded growth and the lower photosynthetic activity of the mutant were largely overcome when plants were grown in high CO(2) concentrations, showing that limiting CO(2) supply for photosynthesis was a major cause of the lower growth rate and photosynthetic activity in CMSII.  相似文献   

8.
Zelitch I  Day PR 《Plant physiology》1968,43(11):1838-1844
The hypothesis that net photosynthesis is diminished in many plant species because of a high rate of CO2 evolution in the light has been tested further. High rates of CO2 output in CO2-free air in comparison with dark respiration were found in Chlamydomonas reinhardi, wheat leaves, tomato leaves, and to a lesser extent in Chlorella pyrenoidosa by means of the 14C-photorespiration assay. In tobacco leaves high photorespiration was characteristic of a standard variety, Havana Seed, and a possibly still higher rate was found in a yellow heterozygous mutant, JWB Mutant. However, the dark homozygous sibling of the latter, JWB Wild, had a low photorespiration for the tobacco species. The relative rates of photorespiration were in the same sequence when measured by the 14CO2 released in normal air from leaf disks supplied with glycolate-1-14C in the light.

As would be predicted by the hypothesis, the maximal net rate of photosynthesis at 300 ppm of CO2 in the air in JWB Wild leaves was greater (24%) than in Havana Seed, while JWB Mutant had less CO2 uptake than the standard variety (21%). At 550 ppm of CO2 the differences in net photosynthesis were not as great between the 2 siblings as at 200 ppm. The relative leaf expansion rates of seedlings of the 3 tobacco varieties in a greenhouse had the same relationship as their rates of CO2 assimilation.

Thus within the tobacco species, as in a comparison between tobacco and maize, low photorespiratory CO2 evolution was correlated with higher photosynthetic efficiency. Therefore it seems that increased CO2 uptake should be achieved by genetic interference with the process of photorespiration.

  相似文献   

9.
We measured net ecosystem exchange of carbon dioxide (CO2) (NEE) during wet and dry summers (2000 and 2001) across a range of plant communities at Mer Bleue, a large peatland near Ottawa, southern Ontario, Canada. Wetland types included ombrotrophic bog hummocks and hollows, mineral-poor fen, and beaver pond margins. NEE was significantly different among the sites in both years, but rates of gross photosynthesis did not vary spatially even though species composition at the sites was variable. Soil respiration rates were very different across sites and dominated interannual variability in summer NEE within sites. During the dry summer of 2001, net CO2 uptake was significantly smaller, and most locations switched from a net sink to a source of CO2 under a range of levels of photosynthetically active radiation (PAR). The wetter areas--poor fen and beaver pond margin--had the largest rates of CO2 uptake and smallest rates of respiratory loss during the dry summer. Communities dominated by ericaceous shrubs (bog sites) maintained similar rates of gross photosynthesis between years; by contrast, the sedge-dominated areas (fen sites) showed signs of early senescence under drought conditions. Water table position was the strongest control on respiration in the drier summer, whereas surface peat temperature explained most of the variability in the wetter summer. Q 10 temperature-respiration quotients averaged 1.6 to 2.2. The ratio between maximum photosynthesis and respiration ranged from 3.7:1 in the poor fen to 1.2:1 at some bog sites; it declined at all sites in the drier summer owing to greater respiration rates relative to photosynthesis in evergreen shrub sites and a change in both processes in sedge sites. Our ability to predict ecosystem responses to changing climate depends on a more complete understanding of the factors that control NEE across a range of peatland plant communities.  相似文献   

10.
The photorespiration cycle plays an important role in avoiding carbon drainage from the Calvin cycle and in protecting plants from photoinhibition. The role of photorespiration is frequently underestimated in C(4) plants, since these are characterized by low photorespiration rates. The aim of this work was to study the relationship between CO(2) assimilation, PS II photochemistry and the xanthophyll cycle when the photorespiratory cycle is disrupted in Zea mays L. To this end, the photorespiration inhibitor phosphinothricin (PPT) was applied individually or together with the photorespiratory C(2) acids, glycolate and glyoxylate to maize leaves. Application of PPT alone led to the inhibition of CO(2) assimilation. Moreover, feeding with glycolate or glyoxylate enhanced the effect of PPT on CO(2) assimilation. Our results confirm that the avoidance of the accumulation of the photorespiratory metabolites glycolate, glyoxylate or phosphoglycolate, is of vital importance for coordinated functioning between the glycolate pathway and CO(2) assimilation. Relatively early changes in PS II photochemistry also took place when the photorespiratory cycle was interrupted. Thus, fluorescence photochemical quenching (qP) was slightly reduced (10%) due to the application of PPT together with glycolate or glyoxylate. A decrease in the efficiency of excitation-energy capture by open PS II reaction centres (F'v/F'm) and an increase in thermal energy dissipation (non-photochemical quenching, NPQ) were also measured. These observations are consistent with a limitation of activity of the Calvin cycle and a subsequent lower demand for reduction equivalents. The increase in NPQ is discussed on the basis of changes in the xanthophyll cycle in maize, which seem to provide a limited protective role to avoid photoinhibition when the glycolate pathway is blocked. We conclude that C(2) photorespiratory acids can act as physiological regulators between the photorespiratory pathway and the Calvin cycle in maize.  相似文献   

11.
Inorganic phosphate (Pi)-limited chemostat cultures of the green alga Selenastrum minutum were employed to investigate interactions between Pi assimilation, respiration and photosynthetic processes. Changes in net and gross gas exchange rates indicated that O2 evolution decreases during photosynthetic Pi assimilation. Room temperature and 77K Chi a fluorescence measurements revealed that this photosynthetic suppression is correlated with a transition from state 1 to state 2. Substantial photosynthetic Pi uptake rates occur in the presence of DCMU and KCN. Additionally, the cellular ratio of ATP:NADPH increases following Pi enrichment, suggesting that the ratio of cyclic to linear electron flow is enhanced in response to the high energy requirements of Pi uptake. Net starch degradation was observed during photosynthetic Pi assimilation and the cellular pool size of 3-phosphoglycerate increased; however, gross gas exchange parameters and cellular metabolite pool sizes indicated that mitochondrial respiration plays a smaller role during Pi assimilation in the light than it does in the dark. These observations were used to formulate a model depicting possible interactions between photosynthetic electron flow, photosynthetic and respiratory carbon metabolism and metabolite exchange between the chloroplast, cytosol and mitochondrion during photosynthetic Pi assimilation.  相似文献   

12.
The detection of 12CO2 emission from leaves in air containing 13CO2 allows simple and fast determination of the CO2 emitted by different sources, which are separated on the basis of their labelling velocity. This technique was exploited to investigate the controversial effect of CO2 concentration on mitochondrial respiration. The 12CO2 emission was measured in illuminated and darkened leaves of one C4 plant and three C3 plants maintained at low (30-50 ppm), atmospheric (350-400 ppm) and elevated (700-800 ppm) CO2 concentration. In C3 leaves, the 12CO2 emission in the light (Rd) was low at ambient CO2 and was further quenched in elevated CO2, when it was often only 20-30% of the 12CO2 emission in the dark, interpreted as the mitochondrial respiration in the dark (Rn). Rn was also reduced in elevated CO2. At low CO2, Rd was often 70-80% of Rn, and a burst of 12CO2 was observed on darkening leaves of Mentha sativa and Phragmites australis after exposure for 4 min to 13CO2 in the light. The burst was partially removed at low oxygen and was never observed in C4 leaves, suggesting that it may be caused by incomplete labelling of the photorespiratory pool at low CO2. This pool may be low in sclerophyllous leaves, as in Quercus ilex where no burst was observed. Rd was inversely associated with photosynthesis, suggesting that the Rd/Rn ratio reflects the refixation of respiratory CO2 by photosynthesizing leaves rather than the inhibition of mitochondrial respiration in the light, and that CO2 produced by mitochondrial respiration in the light is mostly emitted at low CO2, and mostly refixed at elevated CO2. In the leaves of the C4 species Zea mays, the 12CO2 emission in the light also remained low at low CO2, suggesting efficient CO2 refixation associated with sustained photosynthesis in non-photorespiratory conditions. However, Rn was inhibited in CO2-free air, and the velocity of 12CO2 emission after darkening was inversely associated with the CO2 concentration. The emission may be modulated by the presence of post-illumination CO2 uptake deriving from temporary imbalance between C3 and C4 metabolism. These experiments suggest that this uptake lasts longer at low CO2 and that the imbalance is persistent once it has been generated by exposure to low CO2.  相似文献   

13.
Bench-grafted Fuji/M.26 apple (Malus domestica Borkh.) trees were fertigated with different concentrations of nitrogen by using a modified Hoagland's solution for 45 d. CO(2) assimilation and photosystem II (PSII) quantum efficiency in response to incident photon flux density (PFD) were measured simultaneously in recent fully expanded leaves under low O(2) (2%) and saturated CO(2) (1300 micromol mol(-1)) conditions. A single curvilinear relationship was found between true quantum yield for CO(2) assimilation and PSII quantum efficiency for leaves with a wide range of leaf N content. The relationship was linear up to a quantum yield of approximately 0.05 mol CO(2) mol(-1) quanta. It then became curvilinear with a further rise in quantum yield in response to decreasing PFD. This relationship was subsequently used as a calibration curve to assess the rate of non-cyclic electron transport associated with Rubisco and the partitioning of electron flow between CO(2) assimilation and photorespiration in different N leaves in response to intercellular CO(2) concentration (C(i)) under normal O(2) conditions. Both the rate of non-cyclic electron flow and the rate of electron flow to CO(2) or O(2) increased with increasing leaf N at any given C(i). The percentage of non-cyclic electron flow to CO(2) assimilation, however, remained the same regardless of leaf N content. As C(i) increased, the percentage of non-cyclic electron flow to CO(2) assimilation increased. In conclusion, the relationship between PSII quantum efficiency and quantum yield for CO(2) assimilation and the partitioning of electron flow between CO(2) assimilation and photorespiration are not affected by N content in apple leaves.  相似文献   

14.
González-Meler  M.A.  Matamala  R.  Peñuelas  J. 《Photosynthetica》1998,34(4):505-512
We analyzed the combined effects of mild drought stress and severe nitrogen (N) deprivation on respiration of acclimated mature leaves of beans (Phaseolus vulgaris L. cv. Garrofal) and peppers (Capsicum annuum L., pure line B6). Rates of oxygen uptake were measured polarographically, and inhibitors were added to the closed cuvette to compare the effects of environmental stress on the cytochrome (cyt) and alternative pathways of mitochondrial respiration. Dark oxygen uptake was decreased by the water deficit treatment in both plants, and in the case of N limitation leaf respiration rates (RD) of peppers were also reduced. RD of leaves of beans and peppers grown under N-limiting conditions did not follow the decrease in leaf N concentration, since RD expressed per unit of tissue N was considerably higher in the N-stressed leaves. Values obtained with specific inhibitors of the two terminal oxidases of mitochondrial respirations suggested that the cyt pathway of respiration was affected by mild drought and severe N stress. When plants were exposed to both environmental stresses, leaf respiration response was similar to that under N limitation, in this case the most severe stress.  相似文献   

15.
Electron flux from water via photosystem II (PSII) and PSI to oxygen (water-water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO(2) assimilation is restricted. Mass spectrometry was used to measure O(2) uptake and evolution together with CO(2) uptake in leaves of French bean and maize at CO(2) concentrations saturating for photosynthesis and the CO(2) compensation point. In French bean at high CO(2) and low O(2) concentrations no significant water-water cycle activity was observed. At the CO(2) compensation point and 3% O(2) a low rate of water-water cycle activity was observed, which accounted for 30% of the linear electron flux from water. In maize leaves negligible water-water cycle activity was detected at the compensation point. During induction of photosynthesis in maize linear electron flux was considerably greater than CO(2) assimilation, but no significant water-water cycle activity was detected. Miscanthus × giganteus grown at chilling temperature also exhibited rates of linear electron transport considerably in excess of CO(2) assimilation; however, no significant water-water cycle activity was detected. Clearly the water-water cycle can operate in leaves under some conditions, but it does not act as a major sink for excess excitation energy when CO(2) assimilation is restricted.  相似文献   

16.
Using a mass-spectrometric 16O2/18O2-isotope technique, we compared the nature and the relative importance of oxygen exchange in photomixotrophic (PM) and photoautotrophic (PA) suspensions of Euphorbia characias L. with those in intact leaves of the same species. Young and mature leaves, dividing and nondividing cell suspensions were characterized in short-term experiments. On chlorophyll basis, the gross photosynthetic activities at CO2 saturating concentration of PA and PM suspensions varied little from those of leaves. On dry weight basis, gross photosynthesis of PA suspensions was equal to that of leaves because of their similar chlorophyll content. This was not the case in PM suspensions where gross photosynthesis was lower and largely varied during the growth cycle. The CO2 compensation point of PA cells (155-265 parts per million) was much higher than that of leaves (50-80 ppm). Oxygen uptakes were analyzed in terms of mitochondrial respiration, photorespiration and light stimulation of oxygen uptake (LSOU), often identified to Mehlertype reactions. In PA and PM suspensions, mitochondrial respiration rates were higher than in leaves by a factor of 1.5 to 4.5. In PM suspensions, photorespiration and LSOU were observed only in nondividing cells. Photorespiration and LSOU rates were comparable in PA suspensions and leaves. Our results demonstrate that photorespiration of PA suspensions has not been affected by the 2% CO2 concentration imposed during 2 years of culture.  相似文献   

17.
Photorespiration: metabolic pathways and their role in stress protection   总被引:27,自引:0,他引:27  
Photorespiration results from the oxygenase reaction catalysed by ribulose-1,5-bisphosphate carboxylase/oxygenase. In this reaction glycollate-2-phosphate is produced and subsequently metabolized in the photorespiratory pathway to form the Calvin cycle intermediate glycerate-3-phosphate. During this metabolic process, CO2 and NH3 are produced and ATP and reducing equivalents are consumed, thus making photorespiration a wasteful process. However, precisely because of this inefficiency, photorespiration could serve as an energy sink preventing the overreduction of the photosynthetic electron transport chain and photoinhibition, especially under stress conditions that lead to reduced rates of photosynthetic CO2 assimilation. Furthermore, photorespiration provides metabolites for other metabolic processes, e.g. glycine for the synthesis of glutathione, which is also involved in stress protection. In this review we describe the use of photorespiratory mutants to study the control and regulation of photorespiratory pathways. In addition, we discuss the possible role of photorespiration under stress conditions, such as drought, high salt concentrations and high light intensities encountered by alpine plants.  相似文献   

18.
We analyzed the combined effects of mild drought stress and severe nitrogen (N) deprivation on respiration of acclimated mature leaves of beans (Phaseolus vulgaris L. cv. Garrofal) and peppers (Capsicum annuum L., pure line B6). Rates of oxygen uptake were measured polarographically, and inhibitors were added to the closed cuvette to compare the effects of environmental stress on the cytochrome (cyt) and alternative pathways of mitochondrial respiration. Dark oxygen uptake was decreased by the water deficit treatment in both plants, and in the case of N limitation leaf respiration rates (RD) of peppers were also reduced. RD of leaves of beans and peppers grown under N-limiting conditions did not follow the decrease in leaf N concentration, since RD expressed per unit of tissue N was considerably higher in the N-stressed leaves. Values obtained with specific inhibitors of the two terminal oxidases of mitochondrial respirations suggested that the cyt pathway of respiration was affected by mild drought and severe N stress. When plants were exposed to both environmental stresses, leaf respiration response was similar to that under N limitation, in this case the most severe stress. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
BACKGROUND AND AIMS: Drought damages cultivated C3, C4 and CAM plants in the semi-arid lands of central Mexico. Drought damage to Opuntia is common when mother cladodes, planted during the dry spring season, develop young daughter cladodes that behave like C3 plants, with daytime stomatal opening and water loss. In contrast, wild Opuntia are less affected because daughter cladodes do not develop on them under extreme drought conditions. The main objective of this work is to evaluate the effects of the number of daughter cladodes on gas exchange parameters of mother cladodes of Opuntia ficus-indica exposed to varying soil water contents. METHODS: Rates of net CO2 uptake, stomatal conductance, intercellular CO2 concentration, chlorophyll content and relative water content were measured in mature mother cladodes with a variable number of daughter cladodes growing in spring under dry and wet conditions. KEY RESULTS: Daily carbon gain by mother cladodes was reduced as the number of daughter cladodes increased to eight, especially during drought. This was accompanied by decreased mother cladode relative water content, suggesting movement of water from mother to daughter cladodes. CO2 assimilation was most affected in phase IV of CAM (late afternoon net CO2 uptake) by the combined effects of daughter cladodes and drought. Rainfall raised the soil water content, decreasing the effects of daughter cladodes on net CO2 uptake by mother cladodes. CONCLUSIONS: Daughter cladodes significantly hasten the effects of drought on mother cladodes by competition for the water supply and thus decrease daily carbon gain by mother cladodes, mainly by inhibiting phase IV of CAM.  相似文献   

20.
The introduction of a more efficient means of measuring leaf photosynthetic rates under field conditions may help to clarify the relationship between single leaf photosynthesis and crop growth rates of commercial maize hybrids. A large body of evidence suggests that gross photosynthesis (AG) of maize leaves can be accurately estimated from measurements of thylakoid electron transport rates (ETR) using chlorophyll fluorescence techniques. However, before this technique can be adopted, it will first be necessary to determine how the relationship between chlorophyll fluorescence and CO2 assimilation is affected by the non-steady state PPFD conditions which predominate in the field. Also, it must be determined if the relationship is stable across different maize genotypes, and across phenological stages. In the present work, the relationship between ETR and AG was examined in leaves of three maize hybrids by making simultaneous measurements of leaf gas exchange and chlorophyll fluorescence, both under controlled environment conditions and in the field. Under steady-state conditions, a linear relationship between ETR and AG was observed, although a slight deviation from linearity was apparent at low AG. This deviation may arise from an error in the assumption that respiration in illuminated leaves is equivalent to respiration in darkened leaves. The relationship between chlorophyll fluorescence and photosynthetic CO2 assimilation was not stable during fluctuations in incident PPFD. Since even minor (e.g. 20%) fluctuations in incident PPFD can produce sustained ( > 20 s) departures from the mean relationship between ETR and AG, chlorophyll fluorometry can only provide an accurate estimate of actual CO2 assimilation rates under relatively stable PPFD conditions. In the field, the mean value of ETR / AG during the early part of the season (4.70 ± 0.07) was very similar to that observed in indoor-grown plants in the vegetative stage (4.60 ± 0.09); however, ETR / AG increased significantly over the growing season, reaching 5.00 ± 0.09 by the late grain-filling stage. Differences in ETR / AG among the three genotypes examined were small (less than 1% of the mean) and not statistically significant, suggesting that chlorophyll fluorometry can be used as the basis of a fair comparison of leaf photosynthetic rates among different maize cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号