共查询到20条相似文献,搜索用时 15 毫秒
1.
System for automatic activation of skinned muscle fibers 总被引:4,自引:0,他引:4
Chiu Y. C.; Quinlan J.; Ford L. E. 《American journal of physiology. Cell physiology》1985,249(5):C522
2.
X-ray diffraction studies indicate that the sarcomeric unit cell of the thick filament lattice of crayfish muscle fibers stripped of the sarcolemma does not shorten isovolumically. This particular behavior can be explained in terms of the variation of negative charge within the A-band with interdigitation of thin filaments. Values for effective charge densities of the filaments are determined and used to calculate the total effective charge within the A-band which is then related to separation between myosin filaments. Correlation between empirical and theoretical values illustrates that interfilament separation in skinned fibers is a linear function of A-band charge. 相似文献
3.
Magnesium ion-dependent contraction of skinned frog muscle fibers in calcium-free solution 下载免费PDF全文
J Gulati 《Biophysical journal》1983,44(1):113-121
Skinned frog fibers were reversibly activated in Ca-free solutions containing 0 mM KCl, 23 microM free Mg, and having an ionic strength of approximately 50 mM. Contractile force was nearly maximal at 22 degrees - 25 degrees C and decreased at lower temperatures. Maximal force in Ca-free solution at 50 mM ionic strength was close to twice the calcium-activated force with pCa 5 and 190 mM ionic strength. The force in Ca-free solution could be reduced to zero by raising the concentration of free Mg from 23 microM to 1.0 mM at the same ionic strength (50 mM). On stretching the fiber from 2.0 to 3.2 micron the force decreased; this effect was similar to that seen with Ca-activated fiber and the data support the idea that Ca-free tension is made at the cross-bridge level. Isotonic contraction during Ca-free activation showed a velocity transient as in Ca-activated fiber at 190 mM ionic strength, but the transient in the present case was very much prolonged. This finding suggests that contraction mechanisms for force generation and for shortening are essentially the same in the two conditions, but that certain rate constants of cross-bridge turnover are slower for the Ca-free contraction. Also, the results indicate that, in low ionic strength, Ca binding to thin filaments is not essential for unmasking the cross-bridge attachment sites, which suggests that the steric blocking mechanism is modified under these conditions. 相似文献
4.
5.
6.
7.
The efflux of 42K from single, skinned (sarcolemma removed) skeletal muscle fibers has been determined. Isotope washout curves are kinetically complex and can be fit as the sum of three exponentials, including a fast component (k = 0.25 s-1) with a pool size equivalent to 91% of the fiber volume, an intermediate component (k = 0.08 s-1) equivalent to 6% of the fiber volume, and a slow component (k = 0.008 s-1) equivalent to 0.5% of fiber volume. Only the intermediate kinetic component is significantly affected by pretreatment of fibers with detergent. Efflux curves from detergent-treated fibers could be fit as the sum of two exponentials with coefficients and rate constants comparable to those of the fast and slow component of washout of untreated controls. Similarly the washout of [14C]sucrose can be described as the sum of two exponentials. We conclude that the intermediate component of 42K washout results from the movement of ions from a membrane bound space within the skinned fiber. Because of its relative volume, the sarcoplasmic reticulum seems to be a reasonable choice as a structural correlate for this component. Our estimate of the potassium permeability for the sarcoplasmic reticulum (SR) based on the efflux data is 10(-7) cm/s. This value is less than previous estimates from isolated preparations. 相似文献
8.
9.
Time-resolved X-ray diffraction by skinned skeletal muscle fibers during activation and shortening 下载免费PDF全文
Force, sarcomere length, and equatorial x-ray reflections (using synchrotron radiation) were studied in chemically skinned bundles of fibers from Rana temporaria sartorius muscle, activated by UV flash photolysis of a new photolabile calcium chelator, NP-EGTA. Experiments were performed with or without compression by 3% dextran at 4 degrees C. Isometric tension developed at a similar rate (t(1/2) = 40 +/- 5 ms) to the development of tetanic tension measured in other studies (Cecchi et al., 1991). Changes in intensity of equatorial reflections (I(11) t(1/2), 15-19 ms; I(10) t(1/2), 24-26 ms) led isometric tension development and were faster than for tetanus. During shortening at 0.14P(o), I(10) and I(11) changes were partially reversed (18% and 30%, respectively, compressed lattice), in agreement with intact cell data. In zero dextran, activation caused a compression of A-band lattice spacing by 0.7 nm. In 3% dextran, activation caused an expansion of 1.4 nm, consistent with an equilibrium spacing of 45 nm. But, in both cases, discharge of isometric tension by shortening caused a rapid lattice expansion of 1.0-1.1 nm, suggesting discharge of a compressive cross-bridge force, with or without compression by dextran, and the development of an additional expansive force during activation. In contrast to I(10) and I(11) data, these findings for lattice spacing did not resemble intact fiber data. 相似文献
10.
11.
Contractile activation in scorpion striated muscle fibers. Dependence on voltage and external calcium 总被引:2,自引:1,他引:2 下载免费PDF全文
《The Journal of general physiology》1984,84(3):321-345
Excitation-contraction coupling was characterized in scorpion striated muscle fibers using standard microelectrode techniques as employed in studies on vertebrate skeletal muscle. The action potential of scorpion muscle consists of two phases of regenerative activity. A relatively fast, overshooting initial spike is followed by a prolonged after- discharge of smaller, repetitive spikes. This after-discharge is accompanied by a twitch that relaxes promptly upon repolarization. Twitches fail in Na-free, tetrodotoxin (TTX)-containing, or Ca-free media. However, caffeine causes contractures in muscles paralyzed by Na- and Ca-free solutions. Experiments on muscle fibers voltage-clamped at a point with two microelectrodes in Na-free or TTX-containing media indicate that: (a) the strength-duration relation for threshold contractions has a shape similar to that in frog muscle, but mean values are displaced approximately 20 mV in the positive direction; (b) tetracaine exerts a parallel effect on strength-duration curves from scorpion and frog; (c) contractile activation in scorpion is abolished in Ca-free media; and (d) the contractile threshold is highly correlated with the occurrence of inward Ca current for pulses of all durations. Thus, the voltage dependence of contractile activation in scorpion and frog muscle is similar. However, the preparations differ in their dependence on extracellular Ca for contraction. These results are discussed in relation to possible mechanisms coupling tubular depolarization to Ca release from the sarcoplasmic reticulum in vertebrate and invertebrate skeletal muscle. 相似文献
12.
Influence of partial activation on force-velocity properties of frog skinned muscle fibers in millimolar magnesium ion 总被引:4,自引:4,他引:4 下载免费PDF全文
Segments of briefly glycerinated muscle fibers from Rana pipiens were activated rapidly by a brief exposure to 2.5 mM free calcium followed by a solution containing calcium buffered with EGTA to produce the desired level of force. Steps to isotonic loads were made using a servomotor, usually 3-5 s after the onset of activation. The relative isotonic forces (P/P0) and velocities from contractions obtained under similar circumstances were grouped together and fitted with hyperbolic functions. Under the condition of 6 mM MgCl2 and 5 mM ATP, there was no significant difference in the relative force-velocity relations obtained at full activation compared with those obtained at partial activation when developed force was approximately 40% of its full value. Control experiments showed that a variety of factors did not alter either the relative force-velocity relations or the finding that partial activation did not change these properties. The factors investigated included the decline in force that occurs with each successive contraction of skinned fibers, the segment length (over a range of 1-3 mm), the sarcomere length (over a range of 1.9-2.2 microns), the magnesium ion concentration (26 microM and 1.4 mM were tested), the ATP concentration, the presence of free calcium, and the age of the preparation (up to 30 h). Attempts to repeat earlier experiments by others showing a dependence of shortening velocity on activation were unsuccessful because the low ionic strength used in those experiments caused the fibers to break after a few contractions. The main conclusion, that the shortening velocity is independent of the level of activation, is consistent with the hypothesis that the cross-bridges act independently and that activating calcium acts only as an all-or-none switch for individual cross-bridge attachment sites, and does not otherwise influence the kinetics of cross-bridge movement. 相似文献
13.
14.
15.
Calcium and ionic strength are both known to modify the force developed by skinned frog muscle fibers. To determine how these parameters affect the cross-bridge contraction mechanism, the isotonic velocity transients following step changes in load were studied in solutions in which calcium concentration and ionic strength were varied. Analysis of the motion showed that calcium has no effect on either the null time or the amplitude of the transients. In contrast, the transient amplitude was increased in high ionic strength and was suppressed in low ionic strength. These results are consistent with the idea that calcium affects force in skeletal muscle by modulating the number of force generators in a simple switchlike "on-off" manner and that the steady force at a given calcium level is proportional to cross-bridge number. On the other hand, the effect of ionic strength on force is associated with changes in the kinetic properties of the cross-bridge mechanism. 相似文献
16.
Seow C. Y.; Morishita L.; Bressler B. H. 《American journal of physiology. Cell physiology》1998,274(5):C1306
Direct action of the cardiotonic bipyridine milrinone on thecross bridges of single fibers of skinned rabbit skeletal muscle wasinvestigated. At 10°C and pH 7.0, milrinone reduced isometric tension in a logarithmically concentration-dependent manner, with a55% reduction in force at 0.6 mM. Milrinone also reducedCa2+ sensitivity of skinned fibersin terms of force production; the shift in the force-pCa curveindicated a change in the pCa value at 50% maximal force from 6.10 to5.94. The unloaded velocity of shortening was reduced by 18% in thepresence of 0.6 mM milrinone. Parts of the transient tension responseto step change in length were altered by milrinone, so that the testand control transients could not be superimposed. The results indicatethat milrinone interferes with the cross-bridge cycle and possiblydetains cross bridges in low-force states. The results also suggestthat the positive inotropic effect of milrinone on cardiac muscle isprobably not due to the drug's direct action on the muscle crossbridges. The specific and reversible action of the bipyridine on muscle cross bridges makes it a potentially useful tool for probing the chemomechanical cross-bridge cycle. 相似文献
17.
Myosin light chain phosphatase. Effect on the activation and relaxation of gizzard smooth muscle skinned fibers 总被引:3,自引:0,他引:3
Skinned cells of chicken gizzard were used to study the effect of a smooth muscle phosphatase (SMP-IV) on activation and relaxation of tension. SMP-IV has previously been shown to dephosphorylate light chains on myosin. When this phosphatase was added to submaximally Ca2+-activated skinned cells, tension increased while phosphorylation of myosin light chains decreased. In contrast, when the myosin phosphatase was added to cell bundles activated in the absence of Ca2+ by a Ca2+-insensitive myosin light chain kinase, tension and phosphorylation of the myosin light chains both decreased. These data suggest that Ca2+ inhibits the deactivation of tension even when myosin light chains are dephosphorylated to a low level. Furthermore, comparison of Ca2+-activated cells caused to relax in CTP, in the presence or absence of Ca2+, shows that cells in the presence of Ca2+ do not relax completely, whereas in the absence of Ca2+ cells completely relax. Solutions containing Ca2+ and CTP, however, are incapable of generating tension from the resting state. Endogenous myosin light chain kinase is not active in solutions containing CTP and dephosphorylation of myosin light chains occurs in CTP solutions both in the presence and absence of Ca2+. These data imply that Ca2+ inhibits relaxation even though myosin light chains are dephosphorylated. These data are consistent with a model wherein an obligatory Ca2+-activated myosin light chain phosphorylation is followed by a second Ca2+ activation process for further tension development or maintenance. 相似文献
18.
19.
20.
Chloride-induced Ca release in skinned muscle fibers was studied by measuring isometric force transients and 45Ca loss from fiber to washout solutions. Skinned fibers prepared from muscles soaked in normal Ringer solution made large force transients in 120 mM Cl solution with 5 mM ATP and 1 mM Mg, but 3 mM Mg was inhibitory. Mg inhibition was antagonized by low temperature and by Cd, agents which slow active Ca uptake by the sarcoplasmic reticulum (SR). In low Mg++, Cl stimulated rapid 45Ca release from the SR in sufficient amounts to account for the force response. The increased 45Ca release was inhibited by EGTA, suggesting that release requires free Ca under these conditions. The 45Ca initially released was partially reaccumulated later. Reaccumulation was increased in higher Mg++. These results provide additional evidence that the Ca uptake rate is an important determinant of net release, and suggest that Mg++ acts primarily on this mechanism. Skinned fibers prepared from muscles soaked in low Cl solutions could give force responses to Cl solutions with 3 mM and 6 mM Mg. This observation suggests that the Cl stimulus varies with the [Cl] gradient across the internal membranes, and supports the hypothesis that applied Cl causes membrane depolarization. 相似文献