首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin E disappearance is accelerated in cigarette smokers due to their increased oxidative stress and is inversely correlated with plasma vitamin C concentrations. Therefore, we hypothesized that ascorbic acid supplementation (500 mg, twice daily; 2 weeks) would normalize smokers' plasma alpha- and gamma-tocopherol disappearance rates and conducted a double-blind, placebo-controlled, randomized crossover investigation in smokers (n=11) and nonsmokers (n=13) given a single dose of deuterium-labeled alpha- and gamma-tocopherols (50 mg each d6-RRR-alpha and d2-RRR-gamma-tocopheryl acetate). During the placebo trial, smokers, compared with nonsmokers, had significantly (P<0.05) greater alpha- and gamma-tocopherol fractional disappearance rates and shorter half-lives. Ascorbic acid supplementation doubled (P<0.0001) plasma ascorbic acid concentrations in both groups and attenuated smokers', but not nonsmokers', plasma alpha- and gamma-tocopherol (P<0.05) fractional disappearance rates by 25% and 45%, respectively. Likewise, smokers' plasma deuterium-labeled alpha- and gamma-tocopherol concentrations were significantly higher (P<0.05) at 72 h during ascorbic acid supplementation compared with placebo. Ascorbic acid supplementation did not significantly change (P>0.05) time of maximal or maximal-labeled alpha- and gamma-tocopherol concentrations. Smokers' plasma F2alpha-isoprostanes were approximately 26% higher than nonsmokers (P>0.05) and were not affected by ascorbic acid supplementation in either group (P>0.05). In summary, cigarette smoking increased plasma alpha- and gamma-tocopherol fractional disappearance rates, suggesting that the oxidative stress from smoking oxidizes tocopherols and that plasma ascorbic acid reduces alpha- and gamma-tocopheroxyl radicals to nonoxidized forms, thereby decreasing vitamin E disappearance in humans.  相似文献   

2.
We hypothesized that human plasma alpha- and gamma-tocopherol concentrations reflect differences in their kinetics, especially influenced by gamma-tocopherol metabolism. Vitamin E kinetics were evaluated in humans (n=14) using approximately 50 mg each of an equimolar ratio of d6-alpha- and d2-gamma-tocopheryl acetates administered orally. Mass spectrometry was used to measure deuterated plasma tocopherols, as well as plasma and urinary vitamin E metabolites, alpha- and gamma-carboxyethylhydroxychromans (CEHCs). Plasma d2-gamma-tocopherol fractional disappearance rates (FDR; 1.39+/-0.44 pools/day, mean+/-SD) were more than three times greater than those of d6-alpha-tocopherol (0.33+/-0.11, p<0.001). The d2-gamma-tocopherol half-life was 13+/-4 h compared with 57+/-19 for d6-alpha-tocopherol. Whereas neither plasma nor urinary d6-alpha-CEHC was detectable (limit of detection 1 nmol/L), gamma-CEHC (labeled plus unlabeled) increased from 129+/-20 to 258+/-40 nmol/L by 12 h and returned to baseline by 48 h; at 12 h d2-gamma-CEHC represented 54+/-4% of plasma gamma-CEHC. Women compared with men had a greater d2-gamma-tocopherol FDR (p<0.004) and a greater maximal plasma d2-gamma-CEHC concentration (p<0.02) and CEHC FDR (p<0.007), as well as excreting four times as much d2-gamma-CEHC (p<0.04) in urine. Thus, gamma-tocopherol is rapidly metabolized to gamma-CEHC, and to a greater degree in women than in men, whereas alpha-tocopherol is maintained in the plasma and little is metabolized to alpha-CEHC.  相似文献   

3.
Recent studies have shown that passive smoking impairs vascular endothelial function and induces oxidative stress in humans. However, in most of the previous human data regarding tobacco-induced pathophysiology, vascular endothelial dysfunction and oxidative stress have been separately assessed. This study was designed to determine the association between the acute effect of passive smoking on vascular endothelial function and in-vivo oxidative stress status. We studied 30 healthy male Japanese volunteers (32 +/- 7 years) including 15 habitual smokers and 15 nonsmokers. After baseline echocardiographic, hemodynamic recording, and blood sampling, subjects were exposed to passive smoking for 30 min. Endothelium-dependent vasodilation was measured by using % flow-mediated vasodilation (%FMD) of the brachial artery and plasma levels of 8-isoprostane was measured by enzyme immunoassay before and after the passive smoking exposure. Baseline %FMD was lower (4.3% +/- 1.2% vs. 10.9% +/- 3.1%, p < 0.001) and baseline plasma 8-isoprostane level was higher (41.5 +/- 5.8 pg/mL vs. 26.9 +/- 5.4 pg/mL, p < 0.001) in smokers than those in nonsmokers. The %FMD and 8-isoprostane level did not change after passive smoking in smokers. In nonsmokers, however, the %FMD decreased (to 5.0% +/- 1.9%, p < 0.001) and the 8-isoprostane level increased (to 37.8 +/- 9.6 pg/mL, p < 0.001) significantly after 30 min passive smoking exposure, equivalently to the levels of smokers. Sixty corrected samples before and after passive smoking exposure in all patients showed a significant negative correlation between the % FMD and the plasma 8-isoprostane levels (n = 60, r = -0.69, p < 0.001). Even 30 min of passive smoking rapidly impairs vascular endothelial function, which is associated with oxidative stress. Our data provide the pathophysiological insight for the recent epidemiological evidence about the increased risk of coronary heart disease among nonsmokers exposed to passive smoking.  相似文献   

4.
A total of 59 healthy male subjects (32 smokers and 27 nonsmokers) who had no reported systemic disease and did not take alcohol and vitamin supplementation were included. The levels of autoantibody to oxidized low-density lipoproteins (ox-LDL) in smokers and age-matched nonsmokers were compared. The plasma levels of antioxidants that can affect the formation of ox-LDL were also measured, and correlation analyses between anti ox-LDL IgG and plasma antioxidants, controlling for age and body mass index (BMI), were performed. Plasma alpha-tocopherol and uric acid concentrations of nonsmokers (2.78+/-1.09 microg/mg total lipid and 6.96+/-1.69 mg/dl, respectively) were significantly higher than those of smokers (1.68+/-0.48 microg/mg total lipid and 6.15+/-1.14 mg/dl, respectively) (P<0.05). Although plasma ascorbate and retinol levels were not significantly different between smokers and nonsmokers, smokers older than 45 years old had significantly lower plasma ascorbate levels (0.32+/-0.17 mg/dl) than age-matched nonsmokers (0. 53+/-0.14 mg/dl) (P=0.036). Higher level of plasma anti ox-LDL IgG was noted in the group of smokers compared with nonsmokers (515+/-409 mU/ml vs. 407+/-268 mU/ml, respectively) under the statistic method of Chi-Square test (P=0.049). A significant negative correlation was found between plasma anti ox-LDL IgG and alpha-tocopherol in the combined population as well as in the smoker group (r=-0.26, p=0.047; r=-0.48, p=0.006; respectively). However, there was no correlation between plasma anti ox-LDL IgG and the levels of other antioxidants. These results suggest that reduced concentrations of alpha-tocopherol are associated with cigarette smoking. The significantly negative correlation between plasma anti ox-LDL IgG and alpha-tocopherol in the entire study population as well as in the smoker group suggests that plasma alpha-tocopherol may be partially effective if not totally at protecting LDL from oxidative damage caused by cigarette smoking and dietary supplementation with alpha-tocopherol may provide a protective effect against LDL oxidation, especially in smokers.  相似文献   

5.
The effects of cigarette smoking on n-3 essential FA metabolism were studied in male and female subjects by fitting the concentration-time curves of the d(5)-labeled plasma fatty acids (FAs) originating from a dose of d(5)-18:3n-3 to a compartmental model of n-3 FA metabolism. For 3 weeks, female (smokers, n = 5; nonsmokers, n = 5) and male (smokers, n = 5; nonsmokers, n = 5) subjects subsisted on a beef-based diet. Beginning in the third week, subjects received a dose of d(5)-18:3n-3 ethyl ester (1 g). Plasma FAs were analyzed using gas chromatography (GC) and GC-mass spectrometry, and the kinetic rate parameters were determined from the concentration-time curves for d(5)-18:3n-3, d(5)-20:5n-3, d(5)-22:5n-3, and d(5)-22:6n-3. Women smokers had a 2-fold greater percent of dose in plasma (5.8% vs. 2.9%; P < 0.01) and a higher fractional rate constant coefficient for formation of d(5)-22:6n-3 from d(5)-22:5n-3 (0.03 h(-1) vs. 0.01 h(-1); P < 0.01), compared with nonsmokers. Male smokers had elevated total plasma n-3 FAs, more-rapid turnover of 18:3n-3 (13.3 mg/day(-1) vs. 4.3 mg/day(-1); P < 0.001), a disappearance rate of d(5)-20:5n-3 that was both delayed and slower (0.001 h(-1) vs. 0.012 h(-1); P < 0.05), and a percentage of d(5)-20:5n-3 directed into formation of d(5)-22:5n-3 (99% vs. 61%; P < 0.03) that was greater compared with nonsmokers. Smoking increased the bioavailability of n-3 FAs from plasma, accelerated the fractional synthetic rates, and heightened the percent formation of some long-chain n-3 PUFAs in men and women.  相似文献   

6.
Systemic and pulmonary oxidative stress in idiopathic pulmonary fibrosis.   总被引:7,自引:0,他引:7  
An oxidant/antioxidant imbalance has been proposed in patients with idiopathic pulmonary fibrosis (IPF). We tested this hypothesis by measuring various parameters of the oxidant/antioxidant balance in the plasma of 12 patients with IPF (7 nonsmokers and 5 smokers); in the bronchoalveolar lavage fluid (BALF) of 24 patients with IPF (17 nonsmokers and 7 smokers) and 31 healthy subjects (23 nonsmokers and 8 smokers). The trolox equivalent antioxidant capacity (TEAC) in plasma and BALF was lower in nonsmoking patients with IPF (plasma 0.55+/-0.1 mM, p<.001; BALF 4.8+/-1.2 microM, mean +/-SEM, p<.01), compared with healthy nonsmokers (plasma 1.33+/-0.03 mM; BALF 10+/-2 microM). Similar trends in plasma and BALF TEAC were observed in smoking patients with IPF in comparison with healthy smokers. The decrease in BALF TEAC was concomitant with a decrease in BALF protein thiol levels, but the decrease TEAC levels in plasma in IPF patients was not accompanied by a decrease in protein thiol levels. Reduced glutathione (GSH) was lower in BALF in nonsmoking patients with IPF (1.0+/-0.1 microM) compared with healthy nonsmokers (2.3+/-0.2 microM, p<.001). In contrast, GSH levels were higher in smoking patients with IPF (5.2+/-1.1 microM, p<.001) than in nonsmoking patients. GSSG levels were not different in any of the groups. The levels of products of lipid peroxidation measured as thiobarbituric acid reactive substances (TBARS) in plasma and BALF were significantly increased in both smoking (plasma 2.2+/-0.5 microM, p<.01; BALF 0.18+/-0.04 microM, p<.001), and nonsmoking (plasma 2.1+/-0.3 microM, p<.01; BALF 0.22+/-0.05 microM, p<.001) IPF patients, compared with healthy nonsmokers (plasma 1.4+/-0.3 microM; BALF 0.05+/-0.004 microM). These data show evidence of oxidant/antioxidant imbalance in the lungs of patients with IPF, which is also reflected as systemic oxidant stress.  相似文献   

7.
1,N6-etheno-2'-deoxyadenosine (epsilondA) is one of several promutagenic DNA modifications arising from cellular oxidative metabolism. It is believed that these background DNA lesions may contribute to various diseases, such as cancer. Therefore, human biomonitoring of epsilondA in urine could be a potential marker for oxidative stress-related DNA damage. Existing methods for quantifying urinary epsilondA use 32P postlabeling. We have developed a nonradioactive, fast, and easier method based on column-switching liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry (LC/APCI-MS/MS) in the positive mode. Differences in column temperatures were used to influence analyte retention and sample focusing. With multiple reaction monitoring (MRM) mode the afforded limit of detection was about 0.7 pM when starting with 3 ml of urine. The urinary excretion rates of epsilondA from 28 nonsmoking and 5 smoking men were 10.0-99.6 pmol/24 h, and did not correlate with body weight, age, or plasma vitamin C concentration. The 5 smokers excreted 30.5 +/-8.5 and the 28 nonsmokers excreted 38.6 +/- 2.4 pmol epsilondA per 24 h, p=.37 (mean +/- SEM). The demonstrated level of performance suggests the future applicability of this method to studies of cancer and other diseases related to oxidative stress in humans.  相似文献   

8.
Cigarette smoking is associated with increased oxidative stress and increased risk of degenerative disease. As the major lipophilic antioxidant, requirements for vitamin E may be higher in smokers due to increased utilisation. In this observational study we have compared vitamin E status in smokers and non-smokers using a holistic approach by measuring plasma, erythrocyte, lymphocyte and platelet alpha- and gamma-tocopherol, as well as the specific urinary vitamin E metabolites alpha- and gamma-carboxyethyl-hydroxychroman (CEHC). Fifteen smokers (average age 27 years, smoking time 7.5 years) and non-smokers of comparable age, gender and body mass index (BMI) were recruited. Subjects completed a 7-day food diary and on the final day they provided a 24 h urine collection and a 20 ml blood sample for measurement of urinary vitamin E metabolites and total vitamin E in blood components, respectively. No significant differences were found between plasma and erythrocyte alpha- and gamma-tocopherol in smokers and non-smokers. However, smokers had significantly lower alpha-tocopherol (mean+/-SD, 1.34+/-0.31 micromol/g protein compared with 1.94+/-0.54, P = 0.001) and gamma-tocopherol (0.19+/-0.04 micromol/g protein compared with 0.26+/-0.08, P = 0.026) levels in their lymphocytes, as well as significantly lower alpha-tocopherol levels in platelets (1.09+/-0.49 micromol/g protein compared with 1.60+/-0.55, P = 0.014; gamma-tocopherol levels were similar). Interestingly smokers also had significantly higher excretion of the urinary gamma-tocopherol metabolite, gamma-CEHC (0.49+/-0.25mg/g creatinine compared with 0.32+/-0.16, P = 0.036) compared to non-smokers, while their alpha-CEHC (metabolite of alpha-tocopherol) levels were similar. There was no significant difference between plasma ascorbate, urate and F2-isoprostane levels. Therefore in this population of cigarette smokers (mean age 27 years, mean smoking duration 7.5 years), alterations to vitamin E status can be observed even without the more characteristic changes to ascorbate and F2-isoprostanes. We suggest that the measurement of lymphocyte and platelet vitamin E may represent a valuable biomarker of vitamin E status in relation to oxidative stress conditions.  相似文献   

9.
Smoking causes multiple organ dysfunction. The effect of smoking on skeletal muscle protein metabolism is unknown. We hypothesized that the rate of skeletal muscle protein synthesis is depressed in smokers compared with non-smokers. We studied eight smokers (> or =20 cigarettes/day for > or =20 years) and eight non-smokers matched for sex (4 men and 4 women per group), age (65 +/- 3 and 63 +/- 3 yr, respectively; means +/- SEM) and body mass index (25.9 +/- 0.9 and 25.1 +/- 1.2 kg/m(2), respectively). Each subject underwent an intravenous infusion of stable isotope-labeled leucine in conjunction with blood and muscle tissue sampling to measure the mixed muscle protein fractional synthesis rate (FSR) and whole body leucine rate of appearance (Ra) in plasma (an index of whole body proteolysis), the expression of genes involved in the regulation of muscle mass (myostatin, a muscle growth inhibitor, and MAFBx and MuRF-1, which encode E3 ubiquitin ligases in the proteasome proteolytic pathway) and that for the inflammatory cytokine TNF-alpha in muscle, and the concentration of inflammatory markers in plasma (C-reactive protein, TNF-alpha, interleukin-6) which are associated with muscle wasting in other conditions. There were no differences between nonsmokers and smokers in plasma leucine concentration, leucine rate of appearance, and plasma concentrations of inflammatory markers, or TNF-alpha mRNA in muscle, but muscle protein FSR was much less (0.037 +/- 0.005 vs. 0.059 +/- 0.005%/h, respectively, P = 0.004), and myostatin and MAFBx (but not MuRF-1) expression were much greater (by approximately 33 and 45%, respectivley, P < 0.05) in the muscle of smokers than of nonsmokers. We conclude that smoking impairs the muscle protein synthesis process and increases the expression of genes associated with impaired muscle maintenance; smoking therefore likely increases the risk of sarcopenia.  相似文献   

10.
To evaluate the effect of dietary fat-induced alterations in triglyceride (TG) metabolism on plasma and very low-density lipoprotein (VLDL)-alpha-tocopherol, nine healthy males (mean +/- SEM, age: 36 +/- 3 years, BMI: 24.7 +/- 1.1) consumed a 35%-fat diet (control) for one week followed by a 15% low-fat, high-carbohydrate diet for 5 weeks. After each dietary phase, the subjects ingested an evening meal along with a 50 mg capsule of (2)H(6)-RRR-alpha-tocopheryl acetate; blood samples were drawn over a 24 h period while the subjects remained fasted. Low-fat feeding increased fasting plasma TG concentrations by 53% (116 +/- 27 to 178 +/- 32, mg/dl, p < 0.0001) primarily by reducing VLDL-TG clearance. Total plasma alpha-tocopherol concentrations (labeled + unlabeled) were unchanged (25.8 +/- 2.3 vs. 26.4 +/- 3.0 nmol/ml plasma) and no differences between the diets were observed for plasma (2)H(6)-alpha-tocopherol concentration (4.8 +/- 0.6 nmol/ml, for both diets) or enrichments (18.1 +/- 1.8% average for both diets). However, low-fat feeding significantly increased the amount of alpha-tocopherol in the VLDL fraction (43%, p = 0.04) in concert with elevations in VLDL-apoB and TG. The alpha-tocopherol and TG content of VLDL varied in parallel in individual subjects and fractional replacement rates and clearance of alpha-tocopherol and TG in VLDL were closely correlated. Kinetic parameters were decreased by 32-39% from high-fat to low-fat. These data suggest that vitamin E bioavailability is similar between a 15 and 35% fat diet, with a redistribution of alpha-tocopherol in lipoproteins occurring during low-fat feeding (increased in the VLDL fraction, reduced in the other lipoproteins), and transfer of alpha-tocopherol from VLDL depends upon TG removal from the particle, consistent with previous observations in vitro and in animal studies.  相似文献   

11.
Data are lacking concerning the longitudinal covariability and cross-sectional balance between central and peripheral 5-HIAA concentrations in humans and on the possible associations between tobacco smoking or post-traumatic stress disorder (PTSD) and CSF and plasma 5-HIAA concentrations. Using serial cerebrospinal fluid (CSF) and blood sampling, we determined the concentrations of 5-HIAA in CSF and plasma over 6 h, and examined their relationships in healthy volunteers and patients with PTSD-both smokers and nonsmokers. Patients with PTSD and healthy volunteers had very similar CSF 5-HIAA concentrations. Significant and positive correlations between CSF and plasma 5-HIAA levels were observed within individuals, but this CNS-peripheral 5-HIAA relationship was significantly reduced in smokers (nonsmokers: mean r = 0.559 +/- 0.072; smokers: mean r = 0.329 +/- 0.064 p < 0.038). No significant cross-sectional, interindividual correlation of mean CSF and mean plasma 5-HIAA was seen (r = 0.094). These data show that changes in CSF 5-HIAA levels within an individual over time are largely reflected in plasma 5-HIAA, albeit significantly less so in smokers. The present results therefore suggest that clinically, longitudinal determination of plasma 5-HIAA concentrations within an individual patient can be used to make inferences about relative changes in integrated CSF 5-HIAA concentrations. However, plasma 5-HIAA concentrations provide no significant information about absolute levels of the serotonin metabolite in the CSF.  相似文献   

12.
Acute coronary syndromes are characterized by the expression of proinflammatory cytokines such as C-reactive protein (CRP). Sustained upregulation of inflammatory markers is associated with an adverse prognosis. Vitamin E is known to have significant anti-inflammatory properties and has been associated with a reduction in cardiovascular events in some studies of high-risk patients. The mechanism of benefit remains controversial. We conducted a randomized, double-blind placebo controlled trial of vitamin E 400 IU daily for 6 months in 110 patients with acute coronary syndromes. Serum samples were collected at enrollment and at 2, 4, and 6 months. CRP, interleukin-6 and the soluble cell adhesion molecules were measured. Vitamin E levels increased significantly in the treatment group (from 31 micromol/l at baseline to 51 micromol/l, p <.0001) and were unchanged in the placebo group (32 micromol/l at baseline to 34 micromol/l, p = NS). CRP levels fell in both the vitamin E group and the placebo group over the treatment period (from 17.2 +/- 2.9 to 6.1 +/- 0.8 mg/l and from 21.5 +/- 4.9 to 5.9 +/- 0.9 mg/l, p = NS for the difference between active and placebo groups). However, vitamin E treatment was associated with significantly lower 6 month CRP levels in smokers versus smokers on placebo (4.7 +/- 0.71 mg/l vs. 8.26 +/- 1.5 mg/l, p =.02). Vitamin E reduces CRP levels in smokers with acute coronary syndromes for up to 6 months after hospitalization.  相似文献   

13.
To establish the range of individual blood responses to supplemental vitamin E, 30 healthy subjects ingested 75 mg of deuterium-labelled alpha-tocopherol with a standard breakfast. Blood was collected at 6, 9, 12, 27 and 51 h post ingestion and deuterated (d6) and non-deuterated (do) alpha-tocopherol concentrations were determined in plasma and red blood cells (RBC) by GC-MS. To examine intra-individual responses, 6 of these subjects were re-examined at 6-month intervals over a 30-month period. Post ingestion, the amount of d6-alpha-tocopherol in blood increased rapidly with time with maximal concentrations seen at 12 h (plasma) and 27 h (RBC) in most subjects. At these times, d6-alpha-tocopherol concentration ranged from 0.3-12.4 micromol/l in plasma and 0.6-4.09 micromol/l packed cell in RBC. Area under the curve calculations indicated inter-individual differences of alpha-tocopherol uptake to be 40-fold for plasma (12.9-493.3 micromol h/l) and 6-fold for RBC (24.4-146.1 micromol h/l packed RBC). Intra-individual variation in alpha-tocopherol uptake was small in comparison and remained relatively constant over the 30-month period. We conclude that vitamin E uptake varies widely in the normal population, although it is comparatively stable for an individual over time. These differences likely arise from variations in the regulation of vitamin E uptake and metabolism between subjects. Factors regulating this process must be better understood before the optimal intake of vitamin E can be ascertained.  相似文献   

14.
Enrichment of skin surface lipids with deuterium-labeled alpha-tocopherol was compared with plasma enrichment to evaluate kinetics of the delivery of vitamin E to skin surface lipids. For 7 d, subjects consumed 75 mg each of RRR-alpha-[5-(C2H3)]- (d3) and all rac-alpha-[5,7-(C2H3)2]- (d6) tocopheryl acetates with breakfast. Blood was drawn and skin lipids were collected daily for 2 weeks, then every other day for 2 weeks. A liquid chromatography-mass spectrometry atmospheric pressure chemical ionization method for quantification of deuterium labeled (d3, d6, d9-alpha-tocopherols) and unlabeled (d0-) alpha- and gamma-tocopherols was developed. Tocopherols were quantified at their m/z [M-1] using single ion recording. alpha-Tocopherol detection was linear from 1 to 100 pmol with a detection limit of 40 pg (93 fmol). Detection of gamma-tocopherol was twice as sensitive due to greater ionization efficiency. Though d3- and d6-alpha-tocopherols appeared in plasma within 24 h of the first dose, d3-alpha-tocopherol was not detected in skin surface lipids until approximately 1 week. Plasma percentage d3 peaked at day 8, while skin surface lipid percentage d3 increased on average until day 19. Apparently skin employs a mechanism to deliver alpha-tocopherol into skin via lipid secretions.  相似文献   

15.
The respiratory burst reaction (RBR) of neutrophilic granulocytes of the peripheral blood was estimated by means of the luminol reaction in 10 smokers and in 10 nonsmokers. Compared to the nonsmokers, the RBR of smokers' granulocytes showed a significantly higher rate of RBR. RBR consists of two enzymatic systems, i.e., NADPH-oxidase generating superoxide anions and myeloperoxidase, generating hypochlorous acid. Furthermore the superoxide anion may undergo dismutation to oxygen and peroxide. Thus, since the RBR may cause an oxidative stress, the smokers were supplemented for 10 d with antioxidants, i.e., 200 micrograms L-Se-methionine and 1000 mg vitamin E/d. After 10 d of supplementation with the antioxidants, the RBR of the smokers was significantly decreased by 20-75 percent. Since the oxidative stress associated with RBR may cause autodigestive reactions in the lungs of smokers, it may be beneficial for smokers to use relatively high doses of such antioxidants in order to hamper the pathological processes associated with smoking.  相似文献   

16.
Cigarette smoking impairs endothelial function and is one of the major risk factors for atherosclerosis and coronary heart disease. Insulin resistance is associated with major risk factors for atherosclerosis. We examined the effects of vitamin C on insulin sensitivity and endothelial function by measuring steady-state plasma glucose (SSPG) and flow-mediated dilation (FMD) of the brachial artery. We studied 16 current smokers with normal glucose tolerance, 15 nonsmokers with impaired glucose tolerance (IGT), and 17 nonsmokers with normal glucose tolerance as controls. Both SSPG and FMD were blunted in smokers and nonsmokers with IGT compared with controls. In smokers, vitamin C decreased SSPG (P < 0.01 by ANOVA) with decreasing plasma thiobarbituric acid-reactive substances (TBARS) (P < 0.05 by ANOVA) and improved FMD (P < 0.05 by ANOVA). Furthermore, vitamin C improved both SSPG (P < 0.005 by ANOVA) and FMD (P < 0.05 by ANOVA) in nonsmokers with IGT. SSPG, FMD, or TBARS in controls did not change after vitamin C infusion. There was a significant correlation between SSPG and FMD both in smokers and nonsmokers with IGT, whereas no correlation was observed in controls. In conclusion, both insulin sensitivity and endothelial function were impaired in smokers and nonsmokers with IGT and were improved by vitamin C. Thus increased reactive oxygen species play an important role in the pathogenesis of insulin resistance as well as endothelial dysfunction in smokers and nonsmokers with IGT.  相似文献   

17.
The purpose of this study was to assay the ascorbic acid and tocopherol levels in gingival crevicular fluid (GCF) of smokers and nonsmokers with clinically healthy gingiva. The comparison was determined between the area physically exposed to smoke and the controlateral area. All tested areas required to be free from periodontal diseases at a screening examination. 41 students (16 nonsmokers and 25 smokers) were enrolled in this study. GCF samples were collected in two regions: area of habitual cigarette placement and controlateral area. Areas sampled were at midbuccal and midlingual sites of all teeth 3, 5, 6, and 7. Ascorbic acid and tocopherol values of GCF were determined by HPLC. Smokers were found to have significant (p < 0.05) lower levels of vitamin C in comparison to nonsmokers in all regions tested. Mean GCF tocopherol concentration of smokers did not reveal significant differences between the two regions examined. The vitamin A levels revealed an unsignificant low value in smokers in comparison to control subjects. Tobacco smoke can be the cause of a gingival damage by decrease of vitamin C and A operating through a vasoconstriction and a reduction of the antioxidant properties.  相似文献   

18.
We measured 8-hydroxy-2-deoxyguanosine (8-OHdG) levels in human leukocytes from healthy donors to evaluate oxidative DNA damage and its correlation with smoking, physical exercise, and alcohol consumption. A significant increase in oxidative DNA damage was induced by cigarette smoke, with the mean level of 8-OHdG being significantly higher in smokers (33.1 +/- 10.6 per 10(6) 2-deoxyguanosine (dG) [mean +/- SE], n = 16) compared with nonsmokers (15.3 +/- 1.8 per 10(6) dG, n = 31) and former smokers (17.8 +/- 1.5 per 10(6) dG, n = 9). The highest values were observed after smoking more than 10 cigarettes per day (41.8 +/- 17.1 per 10(6) dG, n = 9). A large interindividual variation in 8-OHdG levels was observed in all analyzed groups. We also observed a correlation between 8-OHdG levels and age in nonsmokers and former smokers. Neither frequency of physical exercise nor alcohol drinking significantly modified 8-OHdG levels in leukocytes.  相似文献   

19.
Cigarette smoking predisposes to the development of multiple diseases involving oxidative damage. We measured a range of oxidative damage biomarkers to understand which differ between smokers and nonsmokers and if the levels of these biomarkers change further during the act of smoking itself. Despite overnight abstinence from smoking, smokers had higher levels of plasma total and esterified F(2)-isoprostanes, hydroxyeicosatetraenoic acid products (HETEs), F(4)-neuroprostanes, 7-ketocholesterol, and 24- and 27-hydroxycholesterol. Levels of urinary F(2)-isoprostanes, HETEs, and 8-hydroxy-2'-deoxyguanosine were also increased compared with age-matched nonsmokers. Several biomarkers (plasma free F(2)-isoprostanes, allantoin, and 7β-hydroxycholesterol and urinary F(2)-isoprostane metabolites) were not elevated. The smokers were then asked to smoke a cigarette; this acute smoking elevated plasma and urinary F(2)-isoprostanes, plasma allantoin, and certain cholesterol oxidation products compared to presmoking levels, but not plasma HETEs or urinary 8-hydroxy-2'-deoxyguanosine. Smokers showed differences in plasma fatty acid composition. Our findings confirm that certain oxidative damage biomarkers are elevated in smokers even after a period of abstinence from smoking, whereas these plus some others are elevated after acute smoking. Thus, different biomarkers do not measure identical aspects of oxidative stress.  相似文献   

20.
The lack of suitable biomarkers of oxidative stress is a common problem for antioxidant intervention studies in humans. We evaluated the efficacy of vitamin C supplementation in decreasing biomarkers of lipid peroxidation in nonsmokers and in cigarette smokers, a commonly studied, free-living human model of chronic oxidative stress. Participants received ascorbic acid (500mg twice per day) or placebo for 17 days in a double-blind, placebo-controlled, randomized crossover design study. The urinary biomarkers assessed and reported herein are derived from 4-hydroperoxy-2-nonenal (HPNE) and include the mercapturic acid (MA) conjugates of 4-hydroxy-2(E)-nonenal (HNE), 1,4-dihydroxy-2(E)-nonene (DHN), and 4-oxo-2(E)-nonenol(ONO). Vitamin C supplementation decreased the urinary concentrations of both ONO-MA (p=0.0013) and HNE-MA (p=0.0213) by ~30%; however, neither cigarette smoking nor sex affected these biomarkers. In contrast, vitamin C supplementation decreased urinary concentrations of DHN-MA (three-way interaction p=0.0304) in nonsmoking men compared with nonsmoking women (p<0.05), as well as in nonsmoking men compared with smoking men (p<0.05). Vitamin C supplementation also decreased (p=0.0092) urinary total of metabolites by ~20%. Thus, HPNE metabolites can be reduced favorably in response to improved plasma ascorbic acid concentrations, an effect due to ascorbic acid antioxidant function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号