首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells which give rise to granulocyte-macrophage colonies under the influence of peripheral blood white cells (CFU-c (WBC)) and Mo T cell conditioned medium (CFU-c (Mo)) sedimented at a faster rate than the cells which form mixed erythroid-granulocytic colonies in methylcellulose in vitro (CFU-mix) and granulocytic (CFU-dg) and megakaryocytic (CFU-dm) colonies in diffusion chambers in mice. Despite identical peak sedimentation rate for the two CFU-c populations, sedimentation profiles suggest that they are heterogeneous with respect to size. A proportion of CFU-c (Mo) may be identical with CFU-dg and CFU-mix. Sedimentation profiles for cells which give rise to mixed colonies in vitro (CFU-mix) and to granulocytic colonies in diffusion chambers in cyclophosphamide pretreated mice (CFU-dg (CY)) and in Mo conditioned medium treated mice (CFU-dg (Mo)) were similar. On the average CFU-dm sedimented somewhat slower than CFU-dg. These and other observations suggesting a close relationship between CFU-dg and multipotential haemopoietic precursors are discussed.  相似文献   

2.
An series of experiments was performed to elucidate the relationship between cells that form granulocytic colonies in fibrin clot diffusion chambers implanted into the peritoneum (i.p.) of irradiated mice (CFU-d) and day 7 and day 14 CFU-U which give rise to colonies after 7 and 14 days in agar cultures in vitro, respectively. Normal human bone marrow cells were cultured in suspension in vitro or in diffusion chambers implanted into irradiated or non-irradiated mice. During these culture conditions there was an initial decrease in the number of CFU-c per culture. This was followed by an increase between day 2 and day 7 of culture. No similar increase of neutrophilic CFU-d was observed. When CFU-d, day 14 and day 7 CFU-c in normal marrow were separated by velocity sedimentation and cultured in suspension culture or in diffusion chambers for 7 days, the maximum increase of day 7 and day 14 CFU-c was observed in slowly sedimenting cell fractions which contained the majority of CFU-d. After 3 days in suspension culture, the maximum increase of day 14 CFU-c was found in fractions which also gave rise to maximum numbers of CFU-c after 7 days. However, day 7 CFU-c were found in fractions which initially contained the majority of day 14 CFU-c. No increase in CFU-d was found in fractions initially containing peak numbers of CFU-c. Between 53 and 71% of CFU-c harvested from diffusion chambers in irradiated mice or from suspension cultures were sensitive to pulse incubation with tritiated thymidine, suggesting that the cells were proliferating during these culture conditions. In diffusion chambers implanted into non-irradiated mice, however, CFU-c were found to be relatively resistant to this treatment (3-11% sensitive to tritiated thymidine). Thus marked increases in CFU-c were also observed during experimental conditions, where no significant DNA synthesis was detected. A reproducible time sequence of increase in CFU-c populations in culture was observed. Day 14 CFU-c and cells that gave rise to clusters on day 7 in agar increased between day 2 and day 4, whereas day 7 CFU-c increased between day 4 and day 7. The results suggested that CFU-d gave rise to CFU-c in culture and that day 14 CFU-c were precursors of day 7 CFU-c.  相似文献   

3.
A series of experiments was performed to elucidate the relationship between cells that form granulocytic colonies in fibrin clot diffusion chambers implanted into the peritoneum (i.p.) of irradiated mice (CFU-d) and day 7 and day 14 CFU-c which give rise to colonies after 7 and 14 days in agar cultures in vitro, respectively. Normal human bone marrow cells were cultured in suspension in vitro or in diffusion chambers implanted into irradiated or non-irradiated mice. During these culture conditions there was an initial decrease in the number of CFU-c per culture. This was followed by an increase between day 2 and day 7 of culture. No similar increase of neutrophilic CFU-d was observed. When CFU-d, day 14 and day 7 CFU-c in normal marrow were separated by velocity sedimentation and cultured in suspension culture or in diffusion chambers for 7 days, the maximum increase of day 7 and day 14 CFU-c was observed in slowly sedimenting cell fractions which contained the majority of CFU-d. After 3 days in suspension culture, the maximum increase of day 14 CFU-c was found in fractions which also gave rise to maximum numbers of CFU-c after 7 days. However, day 7 CFU-c were found in fractions which initially contained the majority of day 14 CFU-c. No increase in CFU-d was found in fractions initially containing peak numbers of CFU-c. Between 53 and 71% of CFU-c harvested from diffusion chambers in irradiated mice or from suspension cultures were sensitive to pulse incubation with tritiated thymidine, suggesting that the cells were proliferating during these culture conditions. In diffusion chambers implanted into non-irradiated mice, however, CFU-c were found to be relatively resistant to this treatment (3–11% sensitive to tritiated thymidine). Thus marked increases in CFU-c were also observed during experimental conditions, where no significant DNA synthesis was detected. A reproducible time sequence of increase in CFU-c populations in culture was observed. Day 14 CFU-c and cells that gave rise to clusters on day 7 in agar increased between day 2 and day 4, whereas day 7 CFU-c increased between day 4 and day 7. The results suggested that CFU-d gave rise to CFU-c in culture and that day 14 CFU-c were precursors of day 7 CFU-c.  相似文献   

4.
The in vivo diffusion chamber (DC) technique for mouse marrow culture was used to determine the effect of a granulocyte inhibitor on the proliferation of the pluripotent stem cell(CFU-s) and the granulocyte progenitor cell (CFU-c). Granulocyte conditioned medium was injected intraperitoneally into mice bearing DCs during the initial 48 hr of culture. The early injections of inhibitor resulted in a significantly reduced number of granulocytic progeny formed within the DCs while there was no growth inhibition of mouse fibroblasts cultured under identical conditions. The reduced cell production was due in part to a significant reduction in the self-renewal rate of the CFU-c while no apparent direct effect was observed upon the growth of the CFU-s within the same cultures. These data suggest that the granulocytic inhibitor(s) acted to reduce the proliferation within the CFU-c population and thereby diminished the amplification potential inherent in the initial cell inoculum.  相似文献   

5.
Murine marrow cells were cultured in Millipore diffusion chambers implanted into the peritoneal cavity of variously conditioned murine hosts. Preirradiation (350 cGy), bleeding (0.5 ml) and phenylhydrazine injection (75 mg/kg i.v.) when performed together on the chamber host, induced better growth of erythropoietic and granulopoietic colonies inside the PCDCs than either of these manoeuvres alone. Small erythrocytic colonies (CFU-E derived) and small granulocytic colonies were observed at day 3 of marrow culture. Erythropoietic bursts and large granulocytic colonies were observed at day 8 of chamber culture. Colonies of macrophage-like cells, fibroblast-like cells, mixed erythro-granulopoietic colonies and megakaryoblasts were observed less regularly in chambers incubated in these conditions. The study provides a standardized, relatively reproducible PCDC culture system for studies of both erythro- and granulopoiesis, and does not require a hypoxic chamber.  相似文献   

6.
The in vitro proliferation and differentiation of myeloid progenitor cells (CFU-c) in agar culture from CBA/Ca mouse bone marrow cells was studied. Density sub-populations of marrow cells were obtained by equilibrium centrifugation in continuous albumin density gradients. The formation of colonies of granulocytes and/or macrophages was studied under the influence of three types of colony-stimulating factor (CSF) from mouse lung conditioned medium CSFMLCM), post-endotoxin mouse serum (CSFES) and from human urine (CSFHu). The effect of the sulphydryl reagent mercaptoethanol on colony development was also examined. The density distribution of CFU-c was dependent on the type of CSF. Functional heterogeneity was found among CFU-c with partial discrimination between progenitor cells forming pure granulocytic colonies and those forming pure macro-phage colonies. Mercaptoethanol increased colony incidence but had no apparent effect on colony morphology or the density distribution of CFU-c.  相似文献   

7.
Murine marrow cells were cultured in Millipore diffusion chambers implanted into the peritoneal cavity of variously conditioned murine hosts. Preirradiation (350 cGy), bleeding (0.5 ml) and phenylhydrazine injection (75 mg/kg i.v.) when performed together on the chamber host, induced better growth of erythropoietic and granulopoietic colonies inside the PCDCs than either of these manoeuvres alone. Small erythrocytic colonies (CFU-E derived) and small granulocytic colonies were observed at day 3 of marrow culture. Erythropoietic bursts and large granulocytic colonies were observed at day 8 of chamber culture. Colonies of macrophage-like cells, fibroblast-like cells, mixed erythro-granulopoietic colonies and megakaryoblasts were observed less regularly in chambers incubated in these conditions. the study provides a standardized, relatively reproducible PCDC culture system for studies of both erythro- and granulopoiesis, and does not require a hypoxic chamber.  相似文献   

8.
The in vivo diffusion chamber (DC) technique for mouse marrow culture was used to determine the effect of a granulocyte inhibitor on the proliferation of the pluri-potent stem cell (CFU-s) and the granulocyte progenitor cell (CFU-c). Granulocyte conditioned medium was injected intraperitoneally into mice bearing DCs during the initial 48 hr of culture. The early injection of inhibitor resulted in a significantly reduced number of granulocytic progeny formed within the DCs while there was no growth inhibition of mouse fibroblasts cultured under identical conditions. The reduced cell production was due in part to a significant reduction in the self-renewal rate of the CFU-c while no apparent direct effect was observed upon the growth of the CFU-s within the same cultures. These data suggest that the granulocytic inhibitor(s) acted to reduce proliferation within the CFU-c population and thereby diminished the amplification potential inherent in the initial cell inoculum.  相似文献   

9.
The in vitro proliferation and differentiation of myeloid progenitor cells (CFU-c) in agar culture from CBA/Ca mouse bone marrow cells was studied. Density subpopulations of marrow cells were obtained by equilibrium centrifugation in continuous albumin density gradients. The formation of colonies of granulocytes and/or macrophages was studied under the influence of three types of colony-stimulating factor (CSF) from mouse lung conditioned medium CSFMLCM), post-endotoxin mouse serum (CSFES) and from human urine (CSFHu). The effect of the sulphydryl reagent mercaptoethanol on colony development was also examined. The density distribution of CFU-c was dependent on the type of CSF. Functional heterogeneity was found among CFU-c with partial discrimination between progenitor cells forming pure granulocytic colonies and those forming pure macrophage colonies. Mercaptoethanol increased colony incidence but had no apparent effect on colony morphology or the density distribution of CFU-c.  相似文献   

10.
Supernatants of murine bone-marrow cultures contain a colony-promoting factor (CPF) which increases the number of granulocyte and macrophage colonies in semi-solid agar cultures in the presence of colony-stimulating factor (CSF). Incubation of bone-marrow cells with CPF results in an increase in the number of granulocyte/macrophage progenitor cells (CFU-c) and the CPF-responsive cells may be younger than the CFU-c. We have investigated the radiosensitivity and the pattern of the recovery after irradiation of CPF-responsive cells. We found that the radiosensitivity of CPF-responsive cells was significantly lower than those of CFU-c, burst-forming units-erythroid (BFU-e) and pluripotent stem cells in vivo (CFU-s) and in vitro (CFU-mix). The CPF-responsive cells remained subnormal even at 28 days after irradiation of the mice, a time when the CFU-s and CFU-c had recovered completely. Therefore the CPF-responsive cells may constitute a separate compartment, namely 'pre-CFU-c', in the maturation sequence of granulopoiesis, and this maturation of the 'pre-CFU-c' to CFU-c seems to be highly stimulated after irradiation to counterbalance the influx from CFU-s.  相似文献   

11.
ABSTRACT Supernatants of murine bone-marrow cultures contain a colony-promoting factor (CPF) which increases the number of granulocyte and macrophage colonies in semi-solid agar cultures in the presence of colony-stimulating factor (CSF). Incubation of bone-marrow cells with CPF results in an increase in the number of granulocyte/macrophage progenitor cells (CFU-c) and the CPF-responsive cells may be younger than the CFU-c. We have investigated the radiosensitivity and the pattern of the recovery after irradiation of CPF-responsive cells. We found that the radiosensitivity of CPF-responsive cells was significantly lower than those of CFU-c. burst-forming units-erythroid (BFU-e) and pluripotent stem cells in vivo (CFU-s) and in vitro (CFU-mix). the CPF-responsive cells remained subnormal even at 28 days after irradiation of the mice, a time when the CFU-s and CFU-c had recovered completely. Therefore the CPF-responsive cells may constitute a separate compartment, namely ‘pre-CFU-c’, in the maturation sequence of granulopoiesis, and this maturation of the ‘pre-CFU-c’ to CFU-c seems to be highly stimulated after irradiation to counterbalance the influx from CFU-s.  相似文献   

12.
Summary Conditioned media of a primary mouse embryo and a mouse cell line were compared as sources of colony-stimulating factor. The incorporation of embryo cell conditioned medium into semisolid cultures of mouse bone-marrow cells induced the formation of a larger number of in vitro colonies than did the addition of equal volumes of LM cell conditioned medium. This finding did not appear to be the result of quantitative differences in the levels of C.S.F. between the sources since concentration of the LM cell conditioned preparation did not enhance effectively the number of colonies produced. Both the colonial morphology and the cellular components of the developing colonies were found to differ in accordance with the C.S.F. source employed for stimulation. Colonies that developed under the influence of embryo cell conditioned medium were typically larger and more disperse than were those produced in cultures stimulated with the LM cell conditioned source. The latter colonies were smaller, more compact and contained fewer cells. Differences also were noted in the relative proportion of granulocytes to mononuclear cells comprising the colonies. Those colonies stimulated with LM cell conditioned medium rapidly underwent a transition from primarily a granulocytic composition to one comprised principally of mononuclear cells. Cultures stimulated with embryo cell conditioned medium contained a greater number of granulocytic colonies which persisted for a protracted period during cultivation. The addition of 2-mercaptoethanol to cultures stimulated with embryo cell conditioned medium increased the number of colonies produced. Such synergy did not occur in cultures stimulated with the LM cell conditioned medium. Supported by United States Public Health Service Research Grant CA 13752.  相似文献   

13.
Combined administration of methylglyoxal-bis-guanylhydrazone (MGBG) (25 mg/kg) with difluoromethylornithine (DFMO), or MGBG alone at a higher dose (50 mg/kg), to mice resulted in a decreased white cell count (WBC) in the peripheral blood while DFMO or MGBG alone at a lower dose (25 mg/kg) had no effect. As expected, DFMO alone increased the number of colony forming units spleen (CFU-s), colony forming units diffusion chamber granulocyte (CFU-dg) and colony forming units culture (CFU-c) in the bone marrow. MGBG treatment led to an increase in CFU-dg alone. Combined treatment seemingly had no effect on marrow stem cells. Total tibial and differential counts were not affected by any of the treatments. Cell proliferation in diffusion chamber cultures, as judged by CFU-dg colony formation, was impaired by MGBG alone or in combination with DFMO, at dose levels which had no effect or increased the precursor cell number in the bone marrow. This effect was partially reversed with either putrescine or spermidine. Determination of intracellular polyamine concentrations, demonstrated decreased putrescine and spermidine levels after DFMO administration. As expected, MGBG treatment resulted in decreased spermidine and spermine levels, concomitant with an increase in putrescine. In mice which received both agents, rather than only MGBG, after 3 days higher intracellular polyamine concentrations were observed. After 11 days, however, there was no significant difference between the two groups.  相似文献   

14.
Erythroid colony formation in agar cultures of CBA bone marrow cells was stimulated by the addition of pokeweed mitogen-stimulated spleen conditioned medium (SCM). Optimal colony numbers were obtained when cultures contained 20% fetal calf serum and concentrated spleen conditioned medium. By 7 days of incubation, large burst or unicentric erythroid colonies occurred at a maximum frequency of 40–50 per 105 bone marrow cells. In CBA mice the cells forming erythroid colonies were also present in the spleen, peripheral blood, and within individual spleen colonies. A marked strain variation was noted with CBA mice having the highest levels of erythroid colony-forming cells. In CBA mice erythroid colony-forming cells were mainly non-cycling (12.5% reduction in colony numbers after incubation with hydroxyurea or 3H-thymidine). Erythroid colony-forming cells sedimented with a peak of 4.5 mm/hr, compared with CFU-S, which sedimented at 4.25 mm/hr. The addition of erythropoietin (up to 4 units) to cultures containing SCM did not alter the number or degree of hemoglobinisation of erythroid colonies. Analysis of the total number of erythroid colony-forming cells and CFU-S in 90 individual spleen colonies gave a correlation coefficient of r = 0.93 for these two cell types. In addition to benzidine-positive erythroid cells, up to 40% of the colonies contained, in addition, varying proportions of neutrophils, macrophages, eosinophils, and megakaryocytes. Taken together with the close correlation between the numbers of CFU-S in different adult hemopoietic tissues, including individual spleen colonies, the data indicate that the erythroid colony-forming cells expressing multiple hemopoietic differentiation are members of the hemopoietic multipotential stem cell compartment.  相似文献   

15.
Abstract. Combined administration of methylglyoxal-bis-guanylhydrazone (MGBG) (25 mg/kg) with difluoromethylornithine (DFMO), or MGBG alone at a higher dose (50 mg/kg), to mice resulted in a decreased white cell count (WBC) in the peripheral blood while DFMO or MGBG alone at a lower dose (25 mg/kg) had no effect. As expected, DFMO alone increased the number of colony forming units spleen (CFU-s), colony forming units diffusion chamber granulocyte (CFU-dg) and colony forming units culture (CFU-c) in the bone marrow. MGBG treatment led to an increase in CFU-dg alone. Combined treatment seemingly had no effect on marrow stem cells. Total tibial and differential counts were not affected by any of the treatments. Cell proliferation in diffusion chamber cultures, as judged by CFU-dg colony formation, was impaired by MGBG alone or in combination with DFMO, at dose levels which had no effect or increased the precursor cell number in the bone marrow. This effect was partially reversed with either putrescine or spermidine. Determination of intra-cellular polyamine concentrations, demonstrated decreased putrescine and spermidine levels after DFMO administration. As expected, MGBG treatment resulted in decreased spermidine and spermine levels, concomitant with an increase in putrescine. In mice which received both agents, rather than only MGBG, after 3 days higher intracellular polyamine concentrations were observed. After 11 days, however, there was no significant difference between the two groups.  相似文献   

16.
Abstract. The presence or absence of haemopoietic precursors, which produce mixed colonies in vitro (CFU-mix) was examined in the bone marrow and spleen of (WB x C57BL/6) F1- W/Wv mice. Despite the failure of macroscopically evident colonyformation in the spleens of irradiated mice, haemopoietic cells of W/Wv mice did produce macroscopically-evident mixed colonies containing erythroid cells, macrophages, and often megakaryocytes, in culture medium. The size and constitution of mixed colonies derived from W/Wv mice were comparable to those of mixed colonies from congenic +/+ mice. The present results appear consistent with in vivo haemopoiesis in the W/Wv mice, which is obviously deficient, but sufficient for survival.  相似文献   

17.
C57BL bone marrow cells were separated on the basis of their sedimentation velocity at unit gravity and cell fractions cultured in agar using three types of colony stimulating factor (CSF). Colony-forming cells separated as a single peak (s equal 4.4 mm/hr) in cultures stimulated by mouse lung conditioned medium (CSFMLCM) or endotoxin serum (CSFES). Cluster-forming cells were separable into two peaks and the majority were larger than colony-forming cells (s equal 5.7 mm/hr). Partial segregation of colony-forming cells was observed according to the morphological types of colonies generated, large cells tending to generate macrophage colonies and small cells, granulocytic colonies. Large colony-forming cells were more responsive to stimulation by CSF than small cells. Human urine (CSFHU) appeared unable to proliferation of most small colony-forming cells. Colony-forming cells appear to be a highly heterogeneous population with intrinsic differences in responsiveness to CSF and with differing capacities to generate colonies whose cells differentiate to granulocytes of macrophages.  相似文献   

18.
Formation of granulocytic and macrophage colonies in agar cultures of mouse marrow or spleen cells was stimulated by the addition of medium from pokeweed mitogen-stimulated cultures of mouse spleen cells (PKW-CM). Approximately 5% of the colonies developing were large, dispersed granulocytic colonies (DG-colonies) composed of cells with eosinophilic cytoplasmic granules. The capacity to stimulate DG-colonies was shown by media conditioned by PKW-treated lymphoid and peritoneal cells but not by other cells or organ fragments. Velocity sedimentation studies indicated that cells generating DG-colonies were separable from cells generating regular granulocytic or macrophage colonies. DG-colonies did not survive if transfered to cultures containing other forms of CSF. The active colony stimulating factor in pokeweed mitogen-conditioned medium which stimulates DG-colony formation was antigenically distinct from the factor stimulating granulocytic and macrophage colony formation, was separable electrophoretically from the latter factor and on gel filtration had an apparent molecular weight of 50,000. Although the cells in DG-colonies have not been established to be eosinophils, DG-colonies represent an interesting new system for analysing further aspects of the control of growth and differentiation in hemopoietic populations.  相似文献   

19.
Cells residing in the spleens of nude mice that appear Thy-1 negative can give rise to Thy-1 positive colonies in an in vitro culture system. Cells from pooled colonies can provide an accessory cell required for the development of cytotoxic lymphocytes from their precursors in an in vitro mixed lymphocyte reaction. As few as 50 such colony cells produce detectable activity.  相似文献   

20.
J F Carmier  J Samarut 《Cell》1986,44(1):159-165
To determine the function of c-fps in chicken macrophages and granulocytic cells we have infected chicken bone marrow cells with retroviruses containing the v-fps oncogene. Normal chicken macrophage progenitors, M-CFCs, give rise to macrophage colonies in semisolid cultures when macrophage colony stimulating factor (M-CSF) is added into the culture medium. Upon infection with v-fps bearing retroviruses, we observed that M-CFCs were induced to develop macrophage colonies in vitro without exogenous M-CSF. This activation results from a direct effect of v-fps on the M-CFCs. No leukemic transformation was observed in the infected colonies. By comparing the effects of several retroviruses, we showed that the induction of M-CFC development is specific to v-fps containing viruses and mediated by the v-fps protein. These observations support the hypothesis that the c-fps gene is involved in the control of proliferation and/or differentiation of myeloid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号