首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corticosterone, a glucocorticoid secreted during stress responses, has a range of actions that help birds respond to stressors. Although effects of corticosterone treatment have been described in several avian species, the impacts of defined increases in plasma corticosterone on early development and on corticosterone stress responses are little known. These issues were addressed by providing quail with different doses of corticosterone in drinking water from days 8 to 38 post-hatch. The corticosterone dose consumed by each bird during treatment days 15-30 was calculated by measuring water intake. The corticosterone dose was inversely, but weakly, correlated with weights of the bursa, thymus, spleen, liver, testes, oviduct, muscle, and body, and positively correlated with peritoneal fat deposition. When birds were divided into groups based on their corticosterone intake, weights of the spleen, thymus, bursa, muscle, testes, and oviduct were significantly reduced in birds receiving the highest doses; with the exception of muscle, similar reductions were also observed in birds receiving medium doses, and thymic growth was inhibited in birds receiving low doses. The acute corticosterone stress response was measured by handling birds for 15 min. Plasma corticosterone was transiently increased at 15 min in control birds in response to the handling stressor. Some birds consuming low doses of corticosterone had corticosterone responses similar to control birds. Initial corticosterone concentrations were elevated in birds consuming higher doses of corticosterone. Plasma corticosterone in these birds decreased from 0 to 15 min, then increased from 15 to 30 min. The initial decrease could be due to corticosterone clearance, whilst the increase could indicate that the birds had a greater response than control birds to isolation as a stressor. Corticosterone treatment may have reduced the strength of corticosterone negative feedback within the hypothalamo-pituitary-adrenal axis. The results indicate that individuals and organs differ in their sensitivity to corticosterone. Moreover, elevated plasma corticosterone may disrupt the acute corticosterone stress response, and may thus reduce the ability of birds to cope with stressors.  相似文献   

2.
We examined the effects of time-restricted feeding on regulationof body mass and activity energy expenditure in captive winteringdunlin (Calidris alpina) held in outdoor aviaries at TomalesBay, California. In the first of two experiments, we comparedbirds under 24 h : 24 h (fasting : ad libitum feeding) foodrestriction with controls under continuous ad libitum feeding. In the second experiment, we compared birds under 24 h : 6 h: 12 h : 6 h (fasting : ad libitum : fasting : ad libitum)food restriction with birds under 24 h : 24 h food restriction.We estimated total energy expended on activities from dailymass balance using an additive model based on measures of grossenergy intake, thermoregulation, basal metabolism, and a sensitivity analysis of gross utilization efficiency and energy densityof reserve body tissue. Dunlin under 24 h : 24 h food restrictionovercompensated for body mass lost while fasting, increasingtheir body mass relative to controls fed ad libitum. Dunlinunder 24 h : 6 h : 12 h : 6 h food restriction were unable to recover body mass lost during the first fasting day. Whenallowed to feed, food-restricted birds reduced the amount ofenergy spent on being active and increased food intake andenergy storage relative to controls, but when forced to fast,they increased their activity energy expenditure. These patterns suggest winter body mass regulation consistent with the behaviorsof free-living dunlin in winter.  相似文献   

3.
Although the rat is usually not considered to be sensitive to photoperiod, under some experimental conditions photoperiod responses are unmasked. In addition, we have observed photoperiod-induced changes in body weight gain in lean and obese Zucker rats. In this experiment, body mass, food intake, body composition, brown adipose tissue (BAT) thermogenic state, and blood concentrations of corticosterone, insulin, and glucose were evaluated under one of two lighting conditions: a short (10 h light: 14 h dark) or a long (14 h light: 10 h dark) photoperiod. Plasma corticosterone and glucose concentrations measured under fasting conditions were unaffected by photoperiod in either genotype. The amount of BAT mitochondrial protein isolated was less in long photoperiod rats. BAT mitochondrial GDP binding was unaffected by photoperiod in the lean rats, but tended to be lower in long photoperiod obese rats than in short photoperiod obese rats. Although, photoperiod had no effect on daily food intake of rats exposed to the short versus long photoperiod, body mass was heaviest in obese rats raised in long photoperiod. Plasma insulin was increased in both lean and obese rats in long photoperiod. In addition, fat storage appeared to shift to internal depots in the lean rats exposed to long photoperiod. Our data demonstrate that photoperiod does have an effect on male Zucker rats with respect to body weight and fat distribution, with the obese rats being more sensitive to changes in photoperiod than the lean rats.  相似文献   

4.
Carnitine-deficient juvenile visceral steatosis (JVS) mice, suffering from fatty acid metabolism abnormalities, have reduced locomotor activity after fasting. We examined whether JVS mice exhibit specific defect in the feeding response to fasting, a key process of anti-famine homeostatic mechanism. Carnitine-deficient JVS mice showed grossly defective feeding response to 24 h-fasting, with almost no food intake in the first 4 h, in marked contrast to control animals. JVS mice also showed defective acyl-ghrelin response to fasting, less suppressed leptin, and seemingly normal corticotropin-releasing factor (CRF) expression in the hypothalamus despite markedly increased plasma corticosterone. The anorectic response was ameliorated by intraperitoneal administration of carnitine or acyl-ghrelin, with decreased CRF expression. Intracerebroventricular treatment of CRF type 2 receptor antagonist, anti-sauvagine-30, recovered the defective feeding response of 24 h-fasted JVS mice. The defective feeding response to fasting in carnitine-deficient JVS mice is due to the defective acyl-ghrelin and enhanced CRF signaling in the hypothalamus through fatty acid metabolism abnormalities. In this animal model, carnitine normalizes the feeding response through an inhibition of CRF.  相似文献   

5.
The Japanese quail drinks water vigorously after water deprivation, haemorrhage and administration of hypertonic saline solution. Most avian species responded to angiotensin II (AII) by drinking, but carnivorous birds and those originating in arid regions were insensitive. The receptive sites for AII were the subfornical organ (SFO) and the preoptic area (POA) in the Japanese quail. Catecholaminergic fibers proceed from the POA to the SFO. Dipsogenic information generated by AII at the POA is transferred to the SFO through the catecholaminergic nerve fibres. Plasma AII increased following dehydration and haemorrhage and returned to a normal level immediately after rehydration. Following dehydration, arginine vasotocin, aldosterone and corticosterone increased in plasma as well as AII. A single intraperitoneal injection of AII induced increases of arginine vasotocin, aldosterone and corticosterone in plasma. It seems that AII functions as a trigger for release of these other hormones during dehydration.  相似文献   

6.
Fasting triggers many effects, including increases in circulating concentrations of ghrelin, a primarily stomach-derived orexigenic hormone. Exogenous ghrelin treatment stimulates food intake, implicating it in fasting-induced increases in feeding, a consummatory ingestive behavior. In Siberian hamsters, fasting also stimulates appetitive ingestive behaviors such as foraging and food hoarding. Therefore, we tested whether systemic ghrelin injections (3, 30, and 200 mg/kg) would stimulate these appetitive behaviors using a running wheel-based food delivery system coupled with simulated burrow housing. We also measured active ghrelin plasma concentrations after exogenous ghrelin treatment and compared them to those associated with fasting. Hamsters had the following: 1) no running wheel access, free food; 2) running wheel access, free food; or 3) foraging requirement (10 revolutions/pellet), no free food. Ghrelin stimulated foraging at 0-1, 2-4, and 4-24 h postinjection but failed to affect wheel running activity not coupled to food. Ghrelin stimulated food intake initially (200-350%, first 4 h) across all groups; however, in hamsters with a foraging requirement, ghrelin also stimulated food intake 4-24 h postinjection (200-250%). Ghrelin stimulated food hoarding 2-72 h postinjection (100-300%), most markedly 2-4 h postinjection in animals lacking a foraging requirement (635%). Fasting increased plasma active ghrelin concentrations in a time-dependent fashion, with the 3- and 30-mg/kg dose creating concentrations of the peptide comparable to those induced by 24-48 h of fasting. Collectively, these data suggest that exogenous ghrelin, similar to fasting, increases appetitive behaviors (foraging, hoarding) by Siberian hamsters, but dissimilar to fasting in this species, stimulates food intake.  相似文献   

7.

Background  

Fasting and diabetes are characterized by elevated glucocorticoids and reduced insulin, leptin, elevated hypothalamic AGRP and NPY mRNA, and reduced hypothalamic POMC mRNA. Although leptin replacement can reverse changes in hypothalamic gene expression associated with fasting and diabetes, leptin also normalizes corticosterone; therefore the extent to which the elevated corticosterone contributes to the regulation of hypothalamic gene expression in fasting and diabetes remains unclear. To address if elevated corticosterone is necessary for hypothalamic responses to fasting and diabetes, we assessed the effects of adrenalectomy on hypothalamic gene expression in 48-hour-fasted or diabetic mice. To assess if elevated corticosterone is sufficient for the hypothalamic responses to fasting and diabetes, we assessed the effect of corticosterone pellets implanted for 48 hours on hypothalamic gene expression.  相似文献   

8.
Physiological responses to social isolation stress were compared in 56-day-old male Japanese quail. Birds were fed pretreated diets for 3 days as follows: (i) Basal diet (control); (ii) Basal diet + 1500 mg/kg metyrapone (BM); (iii) Basal diet + 30 mg/kg corticosterone (BCO); (iv) Basal diet + 250 mg/kg ascorbic acid (BC); (v) Basal diet + 250 mg/kg α-tocopherol (BE); (vi) Basal diet + 250 mg/kg ascorbic acid and 250 mg/kg α-tocopherol (BCE). The birds were subsequently socially isolated in individual opaque brown paper box for 2 hours. Plasma corticosterone (CORT) concentration and heart and brain heat shock protein 70 (Hsp 70) expressions were determined before stress and immediately after stress. Two hours of isolation stress elevated CORT concentration significantly in the control and BE birds but not in the BC, BCE and BM birds. There was a significant reduction in CORT concentration after isolation stress in the BCO group. Isolation stress increased Hsp 70 expression in the brain and heart of control and BM birds. However, brain and heart Hsp 70 expressions were not significantly altered in the isolated BC, BCE and BE birds. Although, the CORT concentration of BM birds was not affected by isolation stress, Hsp70 expression in both brain and heart were significantly increased. Moreover, exogenous corticosterone supplementation did not result in elevation of Hsp 70 expression. It can be concluded that, although Hsp 70 induction had not been directly affected by CORT concentration, it may be modulated by the HPA axis function via activation of ACTH.  相似文献   

9.
Dogfish sharks are opportunistic predators, eating large meals at irregular intervals. Here we present a synthesis of data from several previous studies on responses in plasma metabolites after natural feeding and during prolonged fasting (up to 56 days), together with new data on changes in plasma concentrations of amino acids and non-esterified fatty acids. Post-prandial and long-term fasting responses were compared to control sharks fasted for 7 days, a typical inter-meal interval. A feeding frenzy was created in which dogfish were allowed to feed naturally on dead teleosts at two consumed ration levels, 2.6% and 5.5% of body weight. Most responses were more pronounced at the higher ration level. These included increases in urea and TMAO concentrations at 20 h, followed by stability through to 56 days of fasting. Ammonia levels were low and exhibited little short-term response to feeding, but declined to very low values during the extended fast. Glucose and β-hydroxybutyrate both fell after feeding, the latter to a greater and more prolonged extent (up to 60 h), whereas acetoacetate did not change. During prolonged fasting, glucose concentrations were well regulated, but β-hydroxybutyrate increased to 2–3-fold control levels. Total plasma amino acid concentrations increased in a biphasic fashion, with peaks at 6–20 h, and 48–60 h after the meal, followed by homeostasis during the extended fast. Essential and non-essential amino acids generally followed this same pattern, though some exhibited different trends after feeding: taurine, β-alanine, and glycine (decreases or stability), alanine and glutamine (modest prolonged increases), and threonine, serine, asparagine, and valine (much larger short-term increases). Plasma non-esterified fatty acid concentrations declined markedly through 48 h after the 2.6% meal. These data are interpreted in light of companion studies showing elevations in aerobic metabolic rate, urea production, rectal gland function, metabolic base excretion, and activation of ornithine–urea cycle and aerobic enzymes after the meal, and muscle N-depletion but maintenance of osmolality and urea production during long-term fasting.  相似文献   

10.
Amphibians respond to environmental stressors by secreting corticosterone, a stress hormone which promotes physiological and behavioral responses. Capture handling can be used to stimulate physiological stress response in amphibians. The use of single blood sampling and presentation of mean data often limits the quantification of within and between individual variation in baseline and short-term corticosterone stress responses in amphibians. It is important for studies of amphibian physiological ecology to determine whether baseline and short-term corticosterone stress responses are consistent or not. We quantified repeatability (r), a statistical measure of consistency, in baseline and short-term corticosterone stress responses to a standard capture and handling stress protocol in free-living adult male cane toads (Rhinella marina). Corticosterone metabolite concentrations were measured entirely non-invasively in male toad urine samples via an enzyme-immunoassay. During the first sampling occasion, urine samples were collected manually from individual male toads (n = 20) immediately upon field capture. Toads were handled for 5 min then transferred to plastic bags (constituting a mild stressor), and urine samples were collected hourly over 8 h in the field. The toads were resampled for baseline (0 h) urine corticosterone with hourly urine sampling over 8 h (for quantification of the stress induced corticosterone) at 14 day intervals on three consecutive occasions. Within and between sample variations in urinary corticosterone metabolite concentrations were also quantified. All toads expressed a corticosterone stress response over 8 h to our standard capture and handling stress protocol. Variations both within and between toads was higher for corrected integrated corticosterone concentrations than corticosterone concentrations at baseline, 3 or 6 h. Baseline urinary corticosterone metabolite concentration of the male toads was highly repeatable (r = 0.877) together with high statistical repeatabilities for 3 h (r = 0.695), 6 h (r = 0.428) and 8 h (r = 0.775) corticosterone metabolite concentrations, and for the total and corrected integrated corticosterone responses (r = 0.807; r = 0.743 respectively). This study highlights that baseline and short-term corticosterone stress responses are repeatable in free-living amphibians. Future studies should utilize this non-invasive tool to explore repeatability among seasons and across years, and determine its functional significance in relation to behavioral ecology and reproduction in amphibians generally.  相似文献   

11.
Little is known about baseline concentrations of adrenal hormones and hormonal responses to stress in sea ducks, although significant population declines documented in several species suggest that sea ducks are exposed to increased levels of environmental stress. Such declines have been observed in geographically distinct harlequin duck populations. We performed an adrenocorticotropic hormone (ACTH) challenge to evaluate adrenal function and characterize corticosterone concentrations in captive harlequin ducks and investigated the effects of capture, surgery, and short term confinement on corticosterone concentrations in wild harlequin ducks. Harlequin ducks responded to the ACTH challenge with an average three-fold increase in serum corticosterone concentration approximately 90 min post injection, and a four- to five-fold increase in fecal glucocorticoid concentration 2 to 4 h post injection. Serum corticosterone concentrations in wild harlequin ducks increased within min of capture and elevated levels were found for several hours post capture, indicating that surgery and confinement maintain elevated corticosterone concentrations in this species. Mean corticosterone concentrations in wild harlequin ducks held in temporary captivity were similar to the maximum response levels during the ACTH challenge in captive birds. However, large variation among individuals was observed in responses of wild birds, and we found additional evidence suggesting that corticosterone responses varied between hatch year and after hatch year birds.  相似文献   

12.
Summary The domestic fowl is reported to be extremely resistant toE. coli endotoxemia. We reported (Merrill et al., 1978) that in our hands this species displayed a lowlevel sensitivity similar to that seen in mammals. The discrepancy between previous reports and our recent findings could result from 1) seasonal differences in the responses of the domestic fowl to endotoxemia, 2) the age and nutritional status of animals used in these various studies, and/or 3) the toxicity of the different endotoxins used. Since there is a paucity of information regarding seasonal influences on the responses of experimental animals to shock and trauma, we have extended our earlier studies (conducted in October, fall group) to each of the remaining seasons of the year.Overnight, fasted, unanesthetized white Leghorn roosters (N=38) weighing 2.44±0.6 kg were injected intravenously with anE. coli endotoxin suspension (2.5 mg/kg). A separate group of birds (N=8) were injected with 0.9% saline. Plasma glucose, lactate, corticosterone, arterial blood gases and pH and selected hemodynamic variables were monitored for 24h or until death. Only four of eleven endotoxemic fall birds survived 24 h (LD64). All winter birds (N=9) survived the challenge (LDO), while seven of nine spring and summer-challenged animals (N=9 each group) survived for 24 h (LD22 both groups). The preterminal hypoglycemia and progressive lactacidemia seen in similarly-challenged mammals did not occur in any group. Plasma glucose levels in the fall group (least resistant) were significantly lower than in all other groups. The winter group (most resistant) showed the highest glucose levels. Elevation of plasma corticosterone following the endotoxin challenge was greatest in the winter group and least in the fall group. Similar corticosterone increases were seen in the spring and summer groups. We conclude that resistance to endotoxemia in the domestic fowl is influenced by the season of the year and that such seasonal influences are reflected, in part, by circulating levels of glucose and corticosterone.  相似文献   

13.
Little is known about baseline concentrations of adrenal hormones and hormonal responses to stress in sea ducks, although significant population declines documented in several species suggest that sea ducks are exposed to increased levels of environmental stress. Such declines have been observed in geographically distinct harlequin duck populations. We performed an adrenocorticotropic hormone (ACTH) challenge to evaluate adrenal function and characterize corticosterone concentrations in captive harlequin ducks and investigated the effects of capture, surgery, and short term confinement on corticosterone concentrations in wild harlequin ducks. Harlequin ducks responded to the ACTH challenge with an average three-fold increase in serum corticosterone concentration approximately 90 min post injection, and a four- to five-fold increase in fecal glucocorticoid concentration 2 to 4 h post injection. Serum corticosterone concentrations in wild harlequin ducks increased within min of capture and elevated levels were found for several hours post capture, indicating that surgery and confinement maintain elevated corticosterone concentrations in this species. Mean corticosterone concentrations in wild harlequin ducks held in temporary captivity were similar to the maximum response levels during the ACTH challenge in captive birds. However, large variation among individuals was observed in responses of wild birds, and we found additional evidence suggesting that corticosterone responses varied between hatch year and after hatch year birds.  相似文献   

14.
During long-term fasting at rest, protein utilization is maintained at low levels until it increases at a threshold adiposity. This study examines 1) whether such a shift in energy substrate use also occurs during endurance exercise while fasting, 2) the role of corticosterone, and 3) the adrenocortical response to an acute stressor. Ten species of migrating birds caught after an endurance flight over at least 500 km were examined. Plasma uric acid and corticosterone levels were low in birds with fat stores >5% of body mass and high in birds with smaller fat stores. Corticosterone levels were very high in birds with no visible fat stores and emaciated breast muscles. Corticosterone levels increased with handling time only in birds with large fat stores. These findings suggest that 1) migrating birds with appreciable fat stores are not stressed by endurance flight, 2) a metabolic shift (increased protein breakdown), regulated by an endocrine shift (medium corticosterone levels), occurs at a threshold adiposity, as observed in birds at rest, 3) adrenocortical response to an acute stressor is inhibited after this shift, and 4) an adrenocortical response typical for an emergency situation (high corticosterone levels) is only reached when muscle protein is dangerously low.  相似文献   

15.
The specific roles of corticosterone in promotion of avian migration remain unclear even though this glucocorticosteroid is elevated in many migrating bird species. In general, glucocorticosteroids promote metabolic homeostasis and may elicit effects on feeding and locomotion. Because the migratory stages of refueling and flight are characterized by distinct behaviors and physiology, the determination of corticosterone levels during each stage should help identify potential processes in which corticosterone is involved. We measured baseline levels of corticosterone in bar-tailed godwits (Limosa lapponica) during two distinct stages of migration: (1) immediately after arrival at a false stopover site just short of the Wadden Sea and (2) throughout the subsequent 4-wk refueling period on the Wadden Sea. Plasma corticosterone was higher in arriving than in refueling birds. In addition, corticosterone increased with size-corrected body mass during the refueling phase, suggesting that corticosterone rises as birds prepare to reinitiate flight. Therefore, elevated corticosterone appears associated with migratory flight and may participate in processes characterizing this stage. We also performed a capture stress protocol in all birds and found that corticosterone increased in both arriving and refueling godwits. Therefore, the normal course of migration may be typified by corticosterone concentrations that are lower than those associated with stressful and life-threatening episodes.  相似文献   

16.
Arvicolinae voles are small herbivores relying on constant food availability with weak adaptations to tolerate prolonged food deprivation. The present study performed a comparative analysis on the responses to 4–18 h of food deprivation in the common vole (Microtus arvalis) and the tundra vole (Microtus oeconomus). Both species exhibited rapid decreases in the plasma and liver carbohydrate concentrations during phase I of fasting and the decline in the liver glycogen level was more pronounced in the tundra vole. The plasma thyroxine concentrations of the common vole decreased after 4 h. Lipid mobilization (phase II of fasting) was indicated by the increased plasma free fatty acid levels after 8–18 (the common vole) or 4–18 h (the tundra vole) and by the elevated lipase activities. In the tundra vole, the plasma ghrelin concentrations increased after 12 h possibly to stimulate appetite. Both species showed increased liver lipid concentrations after 4 h and plasma aminotransferase and creatine kinase activities after 12–18 h of food deprivation implying liver dysfunction and skeletal muscle damage. No signs of stimulated protein catabolism characteristic to phase III of fasting were present during 18 h without food.  相似文献   

17.
Calorie restriction of young male rats increases plasma prolactin, decreases luteinizing hormone (LH) and testosterone, and disrupts their 24 h secretory pattern. To study whether this could be the consequence of stress, we examined the 24 h variations of plasma adrenocorticotropic hormone (ACTH) corticosterone, growth hormone (GH), leptin, and adrenal corticosterone. Rats were submitted to a calorie restriction equivalent to a 66% of usual intake for 4 weeks, starting on day 35 of life. Controls were kept in individual cages and allowed to eat a normal calorie regimen. Significantly lower ACTH levels were detected in calorie-restricted rats. Plasma corticosterone levels during the light phase of the daily cycle were significantly higher in calorie-restricted rats. Time-of-day variation in plasma ACTH and corticosterone levels attained significance in calorie-restricted rats only, with a maximum toward the end of the resting phase. The daily pattern of adrenal gland corticosterone mirrored that of circulating corticosterone; however, calorie restriction reduced its levels. Plasma ACTH and corticosterone correlated significantly in controls only. Calorie restriction decreased plasma GH and leptin, and it distorted 24 h rhythmicity. In a second study, plasma ACTH and corticosterone levels were measured in group-caged rats, isolated control rats, and calorie-restricted rats during the light phase of the daily cycle. Plasma ACTH of calorie-restricted rats was lower, and plasma corticosterone was higher, compared with isolated or group-caged controls. The changes in the secretory pattern of hormones hereby reported may be part of the neuroendocrine and metabolic mechanisms evolved to maximize survival during periods of food shortage.  相似文献   

18.
This work analyzes the effect of social isolation of growing male rats on 24-h changes of plasma prolactin, growth hormone, ACTH and leptin, and on plasma and adrenal corticosterone concentrations. At 35 days of life, rats were either individually caged or kept in groups (6-8 animals per cage) under a 12:12 h light/dark schedule (lights on at 08:00 h). A significant arrest of body weight gain regardless of unchanged daily food intake was found in isolated rats after 2 weeks of isolation. On the 4th week, rats were killed at 6 time intervals during a 24-h cycle, beginning at 09:00 h. In isolated rats the 24-h pattern of all parameters tested became distorted, as assessed by Cosinor analysis. When analyzed as a main factor in a factorial analysis of variance, isolation decreased plasma prolactin and growth hormone, increased plasma leptin and corticosterone while decreased adrenal corticosterone. Plasma corticosterone levels correlated significantly with plasma ACTH and with adrenal corticosterone levels in group-caged rats only. These changes can be attributed to an effect of mild stress on the endogenous clock that modulates the circadian hormone release.  相似文献   

19.
This study investigated how total corticosterone concentrations, chick-feeding rates, and adult body mass changed with food availability from 1998 to 2000 in the same individually marked common murres (Uria aalge). Capelin, the main prey species, arrived inshore by the onset of murre chick hatching in 1998 and 1999 (prey match years); whereas in 2000, hatching began approximately 1 week before the capelin arrived inshore to spawn (prey mismatch year). Serum corticosterone concentrations were higher in the same individuals in the prey mismatch year than they were in either of the match years. Birds sampled before peak capelin spawning in the mismatch year had higher corticosterone levels than murres sampled after peak spawning. Murres with higher corticosterone levels had higher chick-feeding rates and less mass loss in the mismatch year (compared to the match year 1999) than birds with lower levels. Corticosterone levels did not differ between birds that had not foraged for at least 12 h (brooded chick overnight) and those that had, suggesting that short-term food deprivation did not affect corticosterone concentrations. Taken together, these findings suggest that the difference between years reflects a baseline shift in corticosterone levels, particularly in the high-quality birds that were able to increase both corticosterone concentrations and foraging effort.  相似文献   

20.
Effect of in ovo leptin administration on the development of Japanese quail   总被引:3,自引:0,他引:3  
Potential changes in the activity of endocrine axes related to growth as a result of leptin administration during embryonic development of birds were evaluated in the Japanese quail as a model bird with fast growth and development. On day 5 of incubation, 0.1 microg or 1 microg of recombinant mice leptin in 50 microl of phosphate buffered saline were injected into the albumen of eggs. Animals from each group were killed by decapitation on day 0, 2, 5, 7, 14, 21, 28, 35, 42, 49 and 56 of life. Plasma concentrations of triiodothyronine (T(3)), thyroxin (T(4)), corticosterone, testosterone, total lipids, triacylglycerols, cholesterol, glucose and alkaline phosphatase activity were measured. Quail treated by leptin hatched earlier (5-24 hours) and had a higher body weight than the control group (P<0.05-0.001). Mean body weight across the whole observed period was higher in both treated groups as compared to the control group (P<0.05). Leptin in ovo administration was accompanied by changes of endocrine and metabolic parameters during postembryonic development. The most prominent changes appeared immediately after hatching (T(3), T(4), total lipids, triacylglycerols) and before sexual maturity. It is suggested that leptin acts as a general signal of low energy status to neuroendocrine systems in birds which improves utilization of nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号