首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
H A de Boer  Y Z Zhang  C Collins  C A Reddy 《Gene》1987,60(1):93-102
An analysis of nucleotide sequences of two types of ligninase cDNAs isolated from the basidiomycete Phanerochaete chrysosporium, designated CLG4 and CLG5, are presented here. The amino acid sequences of the corresponding ligninase proteins, designated LG4 and LG5, respectively, have been deduced from the cDNA sequences. Mature ligninases LG4 and LG5 are preceded by leader sequences containing 28 and 27 amino acids (aa), respectively, and each contains 344 aa residues. The estimated Mrs of mature LG4 and LG5 are 36,540 and 36,607, respectively. Potential N-glycosylation site(s) with the general sequence Asn-X-Thr/Ser are found in both LG4 and LG5. Nucleotide sequence homology between the coding region of CLG4 and CLG5 is 71.5%, whereas the amino acid sequence homology between the two ligninases is 68.5%. The codon usage of ligninases is extremely biased in favor of codons rich in cytosine and guanine. Amino acid sequences of two tryptic peptides of ligninase H8 have exactly matching sequences in ligninase LG5. Also, the sequences of the oligodeoxynucleotide probes, which correspond to the sequences in the tryptic peptides of ligninase H8 and which were used in isolating the ligninase clones from the cDNA library, have exactly matching sequences in CLG5. The experimentally determined N-terminal sequence of purified ligninase H8 is found in the deduced N-terminal amino acid sequence of LG5. These results suggest that CLG5 encodes ligninase H8 and that CLG4 represents a related but different ligninase gene.  相似文献   

2.
Synthesis of the ligninolytic system of the wood-degrading fungus Phanerochaete chrysosporium is induced during secondary metabolism, brought about by nitrogen, carbon, or sulfur starvation. We describe here a strategy for selection of mutants which are ligninolytic (lignin----CO2) and overproduce lignin-degrading enzymes (ligninases) under nutrient-rich conditions (during primary metabolism). The strategy is based on using an adduct of lysine and a lignin model compound. Ligninase-dependent oxidation of this adduct releases free lysine, which complements the lysine requirements of a lysine auxotroph. Accordingly, a lysine auxotroph was mutagenized by UV irradiation and survivors were plated onto medium containing the adduct and high ammonia nitrogen. Four mutants which overproduce the ligninase isozymes were isolated by this procedure. Further characterization of one of the mutants, PSBL-1, indicated that the predominant isozymes produced are H1 (pI = 4.7) and H2 (pI = 4.4). The ligninase activity of PSBL-1, measured by veratryl alcohol oxidation, peaks on day 5 at over 1,000 U.liter-1. The mutant PSBL-1 was also able to degrade [14C]lignin to 14CO2, indicating that the complete ligninolytic system is deregulated.  相似文献   

3.
M Tien  S B Myer 《Applied microbiology》1990,56(8):2540-2544
Synthesis of the ligninolytic system of the wood-degrading fungus Phanerochaete chrysosporium is induced during secondary metabolism, brought about by nitrogen, carbon, or sulfur starvation. We describe here a strategy for selection of mutants which are ligninolytic (lignin----CO2) and overproduce lignin-degrading enzymes (ligninases) under nutrient-rich conditions (during primary metabolism). The strategy is based on using an adduct of lysine and a lignin model compound. Ligninase-dependent oxidation of this adduct releases free lysine, which complements the lysine requirements of a lysine auxotroph. Accordingly, a lysine auxotroph was mutagenized by UV irradiation and survivors were plated onto medium containing the adduct and high ammonia nitrogen. Four mutants which overproduce the ligninase isozymes were isolated by this procedure. Further characterization of one of the mutants, PSBL-1, indicated that the predominant isozymes produced are H1 (pI = 4.7) and H2 (pI = 4.4). The ligninase activity of PSBL-1, measured by veratryl alcohol oxidation, peaks on day 5 at over 1,000 U.liter-1. The mutant PSBL-1 was also able to degrade [14C]lignin to 14CO2, indicating that the complete ligninolytic system is deregulated.  相似文献   

4.
Liginin peroxidase (ligninase) of the white rot fungus Phanerochaete chrysosporium Burdsall was discovered in 1982 as a secondary metabolite. Today multiple isoenzymes are known, which are often collectively called as lignin peroxidase. Lignin peroxidase has been characterized as a veratryl alcohol oxidizing enzyme, but it is a relatively unspecific enzyme catalyzing a variety of reactions with hydrogen peroxide as the electron acceptor. P. chrysosporium ligninases are heme glycoproteins. At least a number of isoenzymes are also phosphorylated. Two of the major isoenzymes have been crystallized. Until recently lignin peroxidase could only be produced in low yields in very small scale stationary cultures owing to shear sensitivity. Most strains produce the enzyme only after grown under nitrogen or carbon limitation, although strains producing lignin peroxidase under nutrient sufficiency have also been isolated. Activities over 2000 U dm(-3) (as determined at 30 degrees to 37 degrees C) have been reported in small scale Erlenmeyer cultures with the strain INA-12 grown on glycerol in the presence of soybean phospholipids under nitrogen sufficiency. In about 8 dm(3) liquid volume pilot scale higher than 100 U dm(-3) (as determined at 23 degrees C) have been obtained under agitation with immobilized P. chrysosporium strains ATCC 24725 or TKK 20512. Good results have been obtained for example with nylon web, polyurethane foam, sintered glass or silicon tubing as the carrier. The immobilized biocatalyst systems have also made large scale repeated batch and semicontinuous production possible. With nylon web as the carrier, lignin peroxidase production has recently been scaled up to 800 dm(3) liquid volume semicontinuous industrial production process.  相似文献   

5.
Six putative lignin peroxidase (LIP) genes were isolated from a lambda EMBL3 phage library of the white-rot fungus, Trametes versicolor, using the Phanerochaete chrysosporium LIP cDNA CLG5 as the probe. Sequence analysis of one of the genes, VLG1, showed that its coding region is interrupted by six small introns (49-64 bp) and that it encodes a mature LIP protein (341 aa; Mr: 36,714) that is preceded by a 25 aa signal sequence. This protein has a relatively high degree of aa homology to the N-termini of the LIP proteins purified from T. versicolor and has an aa homology of 55-60% to the LIP proteins of P. chrysosporium, which is comparable to that found between P. chrysosporium and Phlebia radiata LIP proteins.  相似文献   

6.
Abstract. The wood-degrading white-rot fungus Phanerochaete chrysosporium , has been the subject of intensive research in recent years and, based upon isolation of the extracellular enzyme ligninase, major advances have now been made toward elucidating the mechanism by which this fungus degrades lignin. From these developments, a model emerges which could explain the process by which wood-degrading fungi in general, attack lignin.  相似文献   

7.
The white rot fungus Phanerochaete chrysosporium produces extracellular ligninases as part of its idiophasic ligninolytic system. Agitation has been widely reported to suppress both ligninase production and lignin degradation. Results show that mechanical inactivation of ligninase is possibly the reason why ligninase accumulation is low or absent in agitated shake-flask cultures. Agitation seems to affect the catalytic activity of ligninase and has no apparent effect on either the rate of ligninase production or the physiology of P. chrysosporium. The detergents Tween 20, Tween 40, Tween 60, Tween 80, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) are able to protect both purified ligninase and extant ligninase in culture fluids (free of biomass) against mechanical inactivation due to agitation. Addition of Tween 80 at the end of primary growth to agitated shake flasks containing either pelleted or immobilized mycelial cultures results in production and maintenance of high levels of ligninase activity over several days under conditions of high agitation. Possible mechanisms by which the detergents could protect ligninase are discussed.  相似文献   

8.
Degradation of anthracene by selected white rot fungi   总被引:5,自引:0,他引:5  
Abstract Approximately 60% of the originally supplied anthracene (AC) was degraded in ligninolytic stationary cultures of selected white rot fungi within 21 days. All the white rot fungi tested oxidized AC to anthraquinone (AQ). Unlike Phanerochaete chrysosporium and strain Px, with Pleurotus ostreatus, Coriolopsis polyzona and Trametes versicolor , AQ did not accumulate in the cultures, indicating that AQ was degraded further and its degradation did not appear to be a rate-limiting step. However, P. ostreatus and C. polyzona failed to degrade AQ in the absence of AC. P. ostreatus, T. versicolor and strain Px did not produce lignin peroxidase (ligninase) (LIP) under the test conditions but oxidized AC to AQ suggesting that white rot fungi produce enzyme(s) other than LIP capable of oxidizing compounds with high ionization potential like AC. Moreover, in the case of Ph. chrysosporium and C. polyzona , AC degradation started earlier than the production of LIP. Veratryl alcohol (VA) seemed to be playing a role in AC oxidation catalyzed by LIP in Ph. chrysosporium .  相似文献   

9.
The white-rot fungus Phanerochaete chrysosporium produces extracellular peroxidases (ligninase and Mn-peroxidase) believed to be involved in lignin degradation. These extracellular enzymes have also been implicated in the degradation of recalcitrant pollutants by the organism. Commercial application of ligninase has been proposed both for biomechanical pulping of wood and for wastewater treatment. In vitro stability of lignin degrading enzymes will be an important factor in determining both the economic and technical feasibility of application for industrial uses, and also will be critical in optimizing commercial production of the enzymes. The effects of a number of variables on in vitro stability of ligninase and Mn-peroxidase are presented in this paper. Thermal stability of ligninase was found to improve by increasing pH and by increasing enzyme concentration. For a fixed pH and enzyme concentration, ligninase stability was greatly enhanced in the presence of its substrate veratryl alcohol (3,4-dimethoxybenzyl alcohol). Ligninase also was found to be inactivated by hydrogen peroxide in a second-order process that is proposed to involve the formation of the unreactive peroxidase intermediate Compound III. Mn-peroxidase was less susceptible to inactivation by peroxide, which corresponds to observations by others that Compound III of Mn-peroxidase forms less readily than Compound III of ligninase.  相似文献   

10.
Bioremediation of paper and pulp mill effluents   总被引:1,自引:0,他引:1  
Pulp and paper mill effluents pollute water, air and soil, causing a major threat to the environment. Several methods have been attempted by various researchers throughout the world for the removal of colour from pulp and paper mill effluents. The biological colour removal process uses several classes of microorganisms--bacteria, algae and fungi--to degrade the polymeric lignin derived chromophoric material. White rot fungi such as Phanerochaete chrysosporium, Corius versicolor, Trametes versicolor etc., are efficient in decolourizing paper and pulp mill effluents. Gliocladium virens, a saprophytic soil fungus decolourised paper and pulp mill effluents by 42% due to the production of hemicellulase, lignin peroxidase, manganese peroxidase and laccase.  相似文献   

11.
Two closely linked lignin peroxidase (LPO)-encoding genes (lpo) from Phanerochaete chrysosporium were isolated. Nucleotide sequence studies indicated that the two genes are separated by 1.3 kb of flanking DNA and transcribed in opposite directions. Cloned P. chrysosporium lpo gene probes have been shown to hybridize to multiple sequences present in the DNAs of the white-rot fungi, Bjerkandera adusta, Coriolus versicolor and Fomes lignosus, but no hybridization was detected with DNA from Pleurotus ostreatus. Thus, lpo gene families appear to be common in a number of lignin-degrading basidiomycetes, some of which have not yet been shown to produce LPO proteins.  相似文献   

12.
Biobleaching of hardwood unbleached kraft pulp (UKP) by Phanerochaete chrysosporium and Trametes versicolor was studied in the solid-state fermentation system with different culture media. In this fermentation system with low-nitrogen and high-carbon culture medium, pulp brightness increased by 15 and 30 points after 5 days of treatment with T. versicolor and P. chrysosporium, respectively, and the pulp kappa number decreased with increasing brightness. A comparison of manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase activities assayed by using fungus-treated pulp and the filtrate after homogenizing the fungus-treated pulp in buffer solution indicated that enzymes secreted from fungi were adsorbed onto the UKP and that assays of these enzyme activities should be carried out with the treated pulp. Time course studies of brightness increase and MnP activity during treatment with P. chrysosporium suggested that it was difficult to correlate them on the basis of data obtained on a certain day of incubation, because the MnP activity fluctuated dramatically during the treatment time. When brightness increase and cumulative MnP, LiP, and laccase activities were determined, a linear relationship between brightness increase and cumulative MnP activity was found in the solid-state fermentation system with both P. chrysosporium and T. versicolor. This result suggests that MnP is involved in brightening of UKP by white rot fungi.  相似文献   

13.
Abstract The relationship between humic acid biodegradation and extracellular lignin peroxidase and Mn-dependent peroxidase activities of two white rot fungi, Phanerochaete chrysosporium and Tranetes versicolor , reported to be lignin degraders, was examined. In experimental conditions promoting culture aeration, particularly with T. versicolor no extracellular peroxidase activity could be detected unless humic acids were included in the culture medium. In the presence of humic acids, appreciable enzymatic activities were determined in the culture filtrate of the two fungi. However, T. versicolor was a more effective degrader than P. chrysosporium , and mineralization assays on synthetic humic acids with culture filtrates showed the important role played by Mn2+. The surfactant properties of humic acids are suggested to be responsible for the increase of enzymatic activities.  相似文献   

14.
The lignin peroxidase (ligninase) of Phanerochaete chrysosporium catalyzes the oxidation of a variety of lignin-related compounds. Here we report that this enzyme also catalyzes the oxidation of certain aromatic pollutants and compounds related to them, including polycyclic aromatic hydrocarbons with ionization potentials less than or equal to approximately 7.55 eV. This result demonstrates that the H2O2-oxidized states of lignin peroxidase are more oxidizing than the analogous states of classical peroxidases. Experiments with pyrene as the substrate showed that pyrene-1,6-dione and pyrene-1,8-dione are the major oxidation products (84% of total as determined by high performance liquid chromatography), and gas chromatography/mass spectrometry analysis of ligninase-catalyzed pyrene oxidations done in the presence of H2(18)O showed that the quinone oxygens come from water. We found that whole cultures of P. chrysosporium also transiently oxidize pyrene to these quinones. Experiments with dibenzo[p]dioxin and 2-chlorodibenzo[p]dioxin showed that they are also substrates for ligninase. The immediate product of dibenzo[p]dioxin oxidation is the dibenzo[p]dioxin cation radical, which was observed in enzymatic reactions by its electron spin resonance and visible absorption spectra. The cation radical mechanism of ligninase thus applies not only to lignin, but also to other environmentally significant aromatics.  相似文献   

15.
16.
Two laccase isozymes (I and II) produced by the white-rot fungus Trametes versicolor were purified, and their reactivities towards various substrates and lignins were studied. The N-terminal amino acid sequences of these enzymes were determined and compared to other known laccase sequences. Laccase II showed a very high sequence similarity to a laccase which was previously reported to depolymerize lignin. The reactivities of the two isozymes on most of the substrates tested were similar, but there were some differences in the oxidation rate of polymeric substrates. We found that the two laccases produced similar qualitative effects on kraft lignin and residual lignin in kraft pulp, with no evidence of a marked preference for depolymerization by either enzyme. However, the presence of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) prevented and reversed the polymerization of kraft lignin by either laccase. The delignification of hardwood and softwood kraft pulps with the two isozymes and the mediator was compared; either laccase was able to reduce the kappa number of pulp, but only in the presence of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate).  相似文献   

17.
The importance of extracellular H2O2 in lignin degradation has become increasingly apparent with the recent discovery of H2O2-requiring ligninases produced by white-rot fungi. Here we describe a new H2O2-producing activity of Phanerochaete chrysosporium that involves extracellular oxidases able to use simple aldehyde, alpha-hydroxycarbonyl, or alpha-dicarbonyl compounds as substrates. The activity is expressed during secondary metabolism, when the ligninases are also expressed. Analytical isoelectric focusing of the extracellular proteins, followed by activity staining, indicated that minor proteins with broad substrate specificities are responsible for the oxidase activity. Two of the oxidase substrates, glyoxal and methylglyoxal, were also identified, as their quinoxaline derivatives, in the culture fluid as secondary metabolites. The significance of these findings is discussed with respect to lignin degradation and other proposed systems for H2O2 production in P. chrysosporium.  相似文献   

18.
Phanerochete chrysosporium ligninase (+ H2O2) oxidized the lignin substructure-related compound acetosyringone to a phenoxy radical which was identified by ESR spectroscopy. Cellobiose:quinone oxidoreductase (CBQase) + cellobiose, previously suggested to be a phenoxy radical reducing system, was without effect on the radical. Ligninase polymerized guaiacol and it increased the molecular size of a synthetic lignin. These polymerizations, reflecting phenoxy radical coupling reactions, were also unaffected by the CBQase system. We conclude that ligninase catalyzes phenol polymerization via phenoxy radicals, which CBQase does not affect. The CBQase system also did not produce H2O2, and its physiological role remains obscure. Glucose oxidase + glucose did produce H2O2 as expected, but, like CBQase, it did not reduce the phenoxy radical of acetosyringone. Because intact cultures of P. chrysosporium depolymerize lignins, it is likely that phenol polymerization by ligninase is prevented or reversed in vivo by an as yet undescribed system.  相似文献   

19.
The solid waste (pomace) from olive oil processing cannot be used directly as an animal feed, but it was thought that an appropriate series of fermentations might improve its nutritional value. As a first step, typical samples of pomace were subjected, after an alkaline pre-treatment, to delignification by Phanerochaete chrysosporium (ATCC 19343), Oxysporus sp., Schizophyllum commune, Hyphoderma sp. or Ganoderma sp.; the last four species being freshly isolated from decaying wood collected in a woodland in Jordan. The relative activity of the species was judged by the levels of ligninase or laccase secreted and the extent of lignin degradation under a range of experimental conditions. Oxysporus sp. (ca. 69%) and S. commune (ca. 53%) gave significantly higher levels of breakdown of the lignified material than the other recent isolates. P. chrysosporium (ca. 60%) was not as active as in previously reported studies, and it may be that culturing the fungus on a standard laboratory medium had reduced its ability to generate ligninase. Further work is needed to establish whether the delignified pomace could be further processed into a feed for poultry.  相似文献   

20.
Four cDNA clones for ligninase were isolated from the cDNA library (constructed into the PstI site of E. coli vector pUC9) representing 6 day-old lignin degrading culture of Phanerochaete chrysosporium by the use of three synthetic oligonucleotide probes corresponding to partial amino acid sequences of tryptic peptides of the ligninase. Each of the three probes, 14.1, 14.2 and 25, represents a mixture of 32 12- or 14-base long oligonucleotides. Three cDNA clones hybridized with probe 14.1 but not with probe 25 or 14.2, but one cDNA clone hybridized with all of the three probes. Differential hybridization studies showed that these clones are unique to 6-day poly(A) RNA, but not to 2-day poly(A) RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号