共查询到20条相似文献,搜索用时 0 毫秒
1.
A laboratory reactor, which simulates biofilm formation in water pipes, was used to study interactions in biofilm formation between a nitrogen-fixing strain of Klebsiella pneumoniae and Salmonella enteritidis. The level of attachment of Salm. enteritidis was higher in the binary biofilm than in the single species biofilm. In the initial colonization phase the binary biofilm contained a much higher proportion of metabolically active cells than in single species biofilms formed by either Salm. enteritidis or Kl. pneumoniae. When a pulse of Salm. enteritidis was passed over an already established biofilm of Kl. pneumoniae it rapidly became integrated into the biofilm, from where it was subsequently released into the water column, along with Kl. pneumoniae. Klebsiella pneumoniae fixed nitrogen in the presence of Salm. enteritidis in both types of biofilm. 相似文献
2.
S. Kauffer R. Schmid K. Steffens G. Deckers-Hebestreit K. Altendorf 《Archives of microbiology》1987,148(3):187-192
The ATP synthase complex of Klebsiella pneumoniae (KF1F0) has been purified and characterized. SDS-gel electrophoresis of the purified F1F0 complexes revealed an identical subunit pattern for E. coli (EF1F0) and K. pneumoniae. Antibodies raised against EF1 complex and purified EF0 subunits recognized the corresponding polypeptides of EF1F0 and KF1F0 in immunoblot analysis. Protease digestion of the individual subunits generated an identical cleavage pattern for subunits , , , , a, and c of both enzymes. Only for subunit different cleavage products were obtained. The isolated subunit c of both organisms showed only a slight deviation in the amino acid composition. These data suggest that extensive homologies exist in primary and secondary structure of both ATP synthase complexes reflecting a close phylogenetic relationship between the two enterobacteric tribes.Abbreviations ACMA
9-amino-6-chloro-2-methoxyacridine
- DCCD
N,N-dicyclohexylcarbodiimide
- FITC
fluorescein isothiocyanate
- SDS
sodium dodecyl sulfate
- TTFB
4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole 相似文献
3.
Microcin-mediated interactions between Klebsiella pneumoniae and Escherichia coli strains 总被引:5,自引:0,他引:5
Amensal indirect interactions between a Klebsiella pneumoniae microcin-producing strain and several Escherichia coli strains, all of intestinal origin, were studied. Mixed batch cultures of both microcin-producing and microcin-sensitive strains showed that microcin production and excretion into the medium allowed the producer strain to prevail over sensitive strains, even when initial competition conditions were highly unfavourable for the producer. Mixed cultures also showed the production of a microcin-antagonist by the same microcin-producing strain when the nutrients in the medium had been depleted. The antagonist apparently promoted the viability of sensitive cells already damaged by microcin. These results have likely ecological implications. 相似文献
4.
Phosphate regulon in members of the family Enterobacteriaceae: comparison of the phoB-phoR operons of Escherichia coli, Shigella dysenteriae, and Klebsiella pneumoniae.
下载免费PDF全文

The structure and function of the phoB and phoR genes of Shigella dysenteriae strains and Klebsiella pneumoniae, which are involved in regulation of the phosphate regulon, were analyzed. Complementation tests among the genes of Escherichia coli, S. dysenteriae strains, and K. pneumoniae for production of alkaline phosphatase indicate that S. dysenteriae serotype 2 and serotype 3 strains and K. pneumoniae are phoA+ phoB+ phoR+ but S. dysenteriae Sh and serotype 1 strains are phoA phoB+ phoR. Nucleotide sequences of phoB and phoR of S. dysenteriae Sh and K. pneumoniae are highly homologous to those of E. coli, except for a single base insertion found in phoR of S. dysenteriae Sh. 相似文献
5.
Chromosome transfer and R-prime formation by an RP4::mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis 总被引:34,自引:0,他引:34
We have introduced into the wide host range conjugative plasmid RP4, a mini-Mu derivative which was known to be able to transpose spontaneously in E. coli K-12, and to induce in such a host several kinds of chromosomal rearrangements including replicon fusions. Unlike RP4, RP4::mini-Mu can mediate the transfer of the host chromosome to a recipient bacterium and generate R primes at high frequencies (10?4 for the transfer of a given marker, 10?5 for the formation of R primes carrying a given marker). Two such RP4::mini-Mu plasmids were introduced into one Salmonella typhimurium strain, one Klebsiella pneumoniae strain, and one Proteus mirabilis strain. Each of these three strains were mated with an E. coli K-12 recipient and transconjugants carrying R primes were recovered in all three cases at frequencies ranging from 5 × 10?6 to 10?7. 相似文献
6.
Genes required for formation of the apoMoFe protein of Klebsiella pneumoniae nitrogenase in Escherichia coli 总被引:2,自引:0,他引:2
G S Harris T C White J E Flory W H Orme-Johnson 《The Journal of biological chemistry》1990,265(26):15909-15919
A binary plasmid system was used to produce nitrogenase components in Escherichia coli and subsequently to define a minimum set of nitrogen fixation (nif) genes required for the production of the iron-molybdenum cofactor (FeMoco) reactivatable apomolybdenum-iron (apoMoFe) protein of nitrogenase. The active MoFe protein is an alpha 2 beta 2 tetramer containing two FeMoco clusters and 4 Fe4S4 P centers (for review see, Orme-Johnson, W.H. (1985) Annu. Rev. Biophys. Biophys. Chem. 14, 419-459). The plasmid pVL15, carrying a tac-promoted nifA activator gene, was coharbored in E. coli with the plasmid pGH1 which contained nifHDKTYENXUSVWZMF' derived from the chromosome of the nitrogen fixing bacterium Klebsiella pneumoniae. The apoMoFe protein produced in E. coli by pGH1 + VL15 was identical to the apoprotein in derepressed cells of the nifB- mutant of K. pneumoniae (UN106) in its electrophoretic properties on nondenaturing polyacrylamide gels as well as in its ability to be activated by FeMoco. The constituent peptides migrated identically to those from purified MoFe protein during electrophoresis on denaturing gels. The concentrations of apoMoFe protein produced in nif-transformed strains of E. coli were greater than 50% of the levels of MoFe protein observed in derepressed wild-type K. pneumoniae. Systematic deletion of individual nif genes carried by pGH1 has established the requirements for the maximal production of the FeMoco-reactivatable apoMoFe protein to be the following gene products, NifHDKTYUSWZM+A. It appears that several of the genes (nifT, Y, U, W, and Z) are only required for maximal production of the apoMoFe protein, while others (nifH, D, K, and S) are absolutely required for synthesis of this protein in E. coli. One curious result is that the nifH gene product, the peptide of the Fe protein, but not active Fe protein itself, is required for formation of the apoMoFe protein. This suggests the possibility of a ternary complex of the NifH, D, and K peptides as the substrate for the processing to form the apoMoFe protein. We also find that nifM, the gene which processes the nifH protein into Fe protein (Howard, K.S., McLean, P.A., Hansen, F. B., Lemley, P.V., Kobla, K.S. & Orme-Johnson, W.H. (1986) J. Biol. Chem. 261, 772-778) can, under certain circumstances, partially replace other processing genes (i.e. nifTYU and/or WZ) although it is not essential for apoMoFe protein formation. It also appears that nifS and nifU, reported to play a role in Fe protein production in Azotobacter vinelandii, play no such role in K. pneumoniae, although these genes are involved in apoMoFe formation.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
7.
The enzyme propanediol oxidoreductase, which converts the lactaldehyde formed in the metabolism of fucose and rhamnose into propane-1,2-diol under anaerobic conditions, was investigated in Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. Structural analysis indicated that the enzymes of E. coli and K. pneumoniae have the same Mr and pI, whereas that of Salm. typhimurium also has the same Mr but a slightly different pI. One-dimensional peptide mapping showed identity between the E. coli and K. pneumoniae enzymes when digested with alpha-chymotrypsin, Staphylococcus aureus V8 proteinase or subtilisin. In the case of Salm. typhimurium, this held only for the subtilisin-digested enzymes, indicating that the hydrophobic regions were preserved to a considerable extent. Anaerobically, the three species induced an active propanediol oxidoreductase when grown on fucose or rhamnose. An inactive propanediol oxidoreductase was induced in Salm. typhimurium by either fucose or rhamnose under aerobic conditions, and this was activated once anaerobiosis was established. An inactive propanediol oxidoreductase was also induced in E. coli under aerobic conditions, but only by growth on fucose. The inactive enzyme was not induced by either of the sugars in K. pneumoniae. 相似文献
8.
9.
10.
AIMS: To assess the abilities of 105 avian pathogenic Escherichia coli (APEC) and 103 avian faecal commensal E. coli (AFEC) to form biofilms on a plastic surface and to investigate the possible association of biofilm formation with the phylotype of these isolates. METHODS AND RESULTS: Biofilm production was assessed in 96-well microtitre plates using three different media, namely, M63 minimal medium supplemented with glucose and casamino acids, brain-heart infusion broth, and diluted tryptic soy broth. Avian E. coli are highly variable in their ability to form biofilms. In fact, no strain produced a strong biofilm in all three types of media; however, most (75.7% AFEC and 55.2% APEC) were able to form a moderate or strong biofilm in at least one medium. Biofilm formation in APEC seems to be mostly limited to nutrient deplete media; whereas, AFEC are able to form biofilms in both nutrient deplete and replete media. Also, biofilm formation in E. coli from phylogenetic groups B2, D and B1 was induced by nutrient deplete conditions; whereas, biofilm formation by members of phylogenetic group A was strongest in a rich medium. CONCLUSIONS: Biofilm formation by APEC and phylotypes B2, D and B1 is induced by nutrient deplete conditions, while AFEC are able to form biofilms in both nutrient rich and deplete media. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to investigate biofilm formation by a large sample of avian E. coli isolates, and it provides insight into the conditions that induce biofilm formation in relation to the source (APEC or AFEC) and phylogenetic group (A, B1, B2 and D) of an isolate. 相似文献
11.
Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. In contrast to uropathogenic E. coli (UPEC) that cause symptomatic urinary tract infection, very little is known about the mechanisms by which these strains colonize the urinary tract. Here, we have investigated the biofilm-forming capacity on abiotic surfaces of groups of ABU strains and UPEC strains in human urine. We found that there is a strong bias; ABU strains were significantly better biofilm formers than UPEC strains. Our data suggest that biofilm formation in urinary tract infectious E. coli seems to be associated with ABU strains and appears to be an important strategy used by these strains for persistence in this high-flow environment. 相似文献
12.
Three different techniques, protease accessibility, cell fractionation and in situ immunocytochemistry, were used to study the location of the lipoprotein pullulanase produced by Escherichia coli K12 carrying the cloned pullulanase structural gene (pulA) from Klebsiella pneumoniae, with or without the K. pneumoniae genes required to transport pullulanase to the cell surface (secretion-competent and secretion-incompetent, respectively). Pullulanase produced by secretion-competent strains could be slowly but quantitatively released into the medium by growing the cells in medium containing pronase. The released pullulanase lacked the N-terminal fatty-acylated cysteine residue (and probably also a short N-terminal segment of the pullulanase polypeptide), confirming that the N-terminus is the sole membrane anchor in the protein. Pullulanase produced by secretion-incompetent strains was not affected by proteases, confirming that it is not exposed on the cell surface. Pullulanase cofractionated with both outer and inner membrane vesicles upon isopycnic sucrose gradient centrifugation, irrespective of the secretion competence of the strain. Examination by electronmicroscopy of vesicles labelled with antipullulanase serum and protein A-gold confirmed that pullulanase was associated with both types of vesicles. When thin-sectioned cells were examined by the same technique, pullulanase was found to be located mainly on the cell surface of the secretion-competent cells and mainly in the proximity of the inner membrane in the secretion-incompetent cells. Thus, while the results from three independent techniques (substrate accessibility, protease accessibility and in situ immunocytochemistry) show that pullulanase is transported to the cell surface of secretion-competent cells, this could not be confirmed by cell-fractionation techniques. Possible explanations for this discrepancy are discussed. 相似文献
13.
The formation of germtubes by twelve clinical isolates of C. albicans was studied in human serum containing per millilitre 103 to 109 organisms as: Staphylococcus pyegene, Escherichia coli, Klebsiella pneumoniae, Lactobacillus acidophilus and Proteus vulgaris. All the five bacteria inhibited formation of germtubes by C. albicans at all concentrations and the percent germtube formed diminished with increasing concentration of the bacteria. Lactobacillus acidophilus inhibited the formation of germtubes maximally followed by Staphylococcus pyogene, Escherichia coli and Klebsiella pneumoniae. Proteus vulgaris in the concentrations of 103 to 107 bacteria per millilitre produced only insignificant inhibition of formation of germtubes by C. albicans. Since germtubes of C. albicans are invasive, it is suggested that inhibition of blastospo-regermtube transformation may be significantly responsible for prevention of infection by C. albicans by coexisting bacterial flora. 相似文献
14.
15.
Interaction between the fumarate reductase system of Escherichia coli and the nitrogen fixation genes of Klebsiella pneumoniae.
下载免费PDF全文

For phenotypic expression of nif+Kp genes in Escherichia coli K-12, the anaerobic electron transport system to fumarate must be functional. The role of the fumarate reduction system is to energize the membrane and thus provide the energy necessary for nitrogen fixation. 相似文献
16.
J.J.M. Meulenberg E. Sellink W.A.M. Loenen N.H. Riegman M. Van Kleef P.W. Postma 《FEMS microbiology letters》1990,71(3):337-343
We have cloned genes from Klebsiella pneumoniae which are required for pyrroloquinoline quinone (PQQ) biosynthesis. The cloned 6.7 kb fragment can complement several chromosomal pqq mutants. Escherichia coli strains are unable to synthesize PQQ but E. coli strains containing the cloned 6.7 kb K. pneumoniae fragment can synthesize PQQ in large amounts and E. coli pts mutants can be complemented on minimal glucose medium by this clone. 相似文献
17.
Characterization of a small cryptic plasmid from Salmonella enteritidis that affects the growth of Escherichia coli 总被引:1,自引:0,他引:1
Abstract We examined the plasmid content of 25 clinical isolates of Salmonella enteritidis , and detected the presence of small plasmids (3–5.3 kb) in 9 of them, alone, or in addition to the large, so-called virulence plasmid. A 5.3-kb plasmid isolated as unique extrachromosomal DNA from a strain responsible for a high-mortality outbreak was characterized by restriction mapping and cloning. The plasmid replicon was localized in a 1.7-kb fragment, that hybridized with three of the small plasmids detected in S. enteritidis , and with another small plasmid from Salmonella typhimurium . A strain of Escherichia coli carrying this plasmid, or a cloned 3.7-kb Pvu II restriction fragment, showed a slower growth rate, especially in minimal medium, as well as a noticeable increase in DNA methyltransferase activity. 相似文献
18.
Portrait V Gendron-Gaillard S Cottenceau G Pons AM 《Canadian journal of microbiology》1999,45(12):988-994
For the first time, microcin-producing strains showing inhibitory activities against enteropathogen Salmonella enteritidis were isolated from poultry intestinal contents. Among the numerous strains isolated, two strains of Escherichia coli, named J02 and J03, showing the greatest activities against S. enteritidis, were studied. Biochemical tests and purification identified the main antagonist compound produced as microcin J25. In order to evaluate the protective potential of E. coli J02 and J03 against S. enteritidis infection, the ability of these strains to inhibit growth of S. enteritidis was investigated in mixed culture. A strong antagonist activity was obtained with a preculture phase of the active strain in minimal medium before incubation with S. enteritidis. In a bioreactor experiment simulating the chicken gastric and intestinal tract environment, a mixture of the two strains E. coli J02 and J03, provided an enhanced inhibitory effect. Microcinogenic strain activities were not affected by bile, pancreatic enzymes addition, or acidic conditions. These results suggest the relevant role of microcin-producing microorganisms in microbial intestinal ecology. To conclude, this study shows that microcin J25 strains could exert a beneficial protective effect against S. enteritidis growth in situ. 相似文献
19.
A bacterium utilizing 2-chloro-4,6-diamino-s-triazine (CAAT) as sole nitrogen source was isolated under a N2-free atmosphere and identified as Klebsiella pneumoniae. Concomitant to CAAT degradation the protein content increased and chloride was released into the medium. Under air and a N2-atmosphere no reduction of CAAT degradation resulted, though this strain is able to fix molecular nitrogen, but the decomposition accelerated under anaerobic conditions. The degradation rate increased continuously with increasing CAAT concentration. A continuous CAAT degradation without CAAT accumulation was possible up to a influx rate of 4.8 mol·l–1 h–1 (dilution rate = 0.007 h–1). K. pneumoniae A2 was also able to utilize deethylsimazine (CEAT) and deethylatrazine (CIAT) as nitrogen source. Both under aerobic and anaerobic conditions CEAT could be degraded faster than CIAT. The degradation sequence of mixed s-triazines was cyanuric acid < CAAT < CEAT < CIAT, which was reflected by the degradation times of single compounds. Complete degradation was assumed for all investigated s-triazine derivatives. 相似文献
20.
1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. 总被引:9,自引:0,他引:9
下载免费PDF全文

The dha regulon in Klebsiella pneumoniae enables the organism to grow anaerobically on glycerol and produce 1,3-propanediol (1,3-PD). Escherichia coli, which does not have a dha system, is unable to grow anaerobically on glycerol without an exogenous electron acceptor and does not produce 1,3-PD. A genomic library of K. pneumoniae ATCC 25955 constructed in E. coli AG1 was enriched for the ability to grow anaerobically on glycerol and dihydroxyacetone and was screened for the production of 1,3-PD. The cosmid pTC1 (42.5 kb total with an 18.2-kb major insert) was isolated from a 1,3-PD-producing strain of E. coli and found to possess enzymatic activities associated with four genes of the dha regulon: glycerol dehydratase (dhaB), 1,3-PD oxidoreductase (dhaT), glycerol dehydrogenase (dhaD), and dihydroxyacetone kinase (dhaK). All four activities were inducible by the presence of glycerol. When E. coli AG1/pTC1 was grown on complex medium plus glycerol, the yield of 1,3-PD from glycerol was 0.46 mol/mol. The major fermentation by-products were formate, acetate, and D-lactate. 1,3-PD is an intermediate in organic synthesis and polymer production. The 1,3-PD fermentation provides a useful model system for studying the interaction of a biochemical pathway in a foreign host and for developing strategies for metabolic pathway engineering. 相似文献