共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Grimbert P Bouguermouh S Baba N Nakajima T Allakhverdi Z Braun D Saito H Rubio M Delespesse G Sarfati M 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(6):3534-3541
Thymus-derived CD4+ CD25+ T regulatory cells (Tregs) are essential for the maintenance of self-tolerance. What critical factors and conditions are required for the extra-thymic development of Tregs remains an important question. In this study, we show that the anti-inflammatory extracellular matrix protein, thrombospondin-1, promoted the generation of human peripheral regulatory T cells through the ligation of one of its receptor, CD47. CD47 stimulation by mAb or a thrombospondin-1 peptide induced naive or memory CD4+ CD25- T cells to become suppressive. The latter expressed increased amounts of CTLA-4, OX40, GITR, and Foxp3 and inhibited autologous Th0, Th1, and Th2 cells. Their regulatory activity was contact dependent, TGF-beta independent, and partially circumvented by IL-2. This previously unknown mechanism to induce human peripheral Tregs in response to inflammation may participate to the limitation of collateral damage induced by exacerbated responses to self or foreign Ags and thus be relevant for therapeutic intervention in autoimmune diseases and transplantation. 相似文献
3.
IFN-gamma controls the generation/activation of CD4+ CD25+ regulatory T cells in antitumor immune response 总被引:13,自引:0,他引:13
Nishikawa H Kato T Tawara I Ikeda H Kuribayashi K Allen PM Schreiber RD Old LJ Shiku H 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(7):4433-4440
Immunization with serological identification of Ags by recombinant expression cloning (SEREX)-defined self-Ags leads to generation/activation of CD4+ CD25+ regulatory T cells with suppressive activities and enhanced expression of Foxp3. This is associated with increased susceptibility to pulmonary metastasis following challenge with syngeneic tumor cells and enhanced development of 3-methylcholanthrene-induced primary tumors. In contrast, coimmunization with the same SEREX-defined self-Ags mixed with a CTL epitope results in augmented CTL activity and heightened resistance to pulmonary metastasis, both of which depend on CD4+ Th cells. These active regulatory T cells and Th cells were derived from two distinct CD4+ T cell subsets, CD4+ CD25+ T cells and CD4+ CD25- T cells, respectively. In the present study, IFN-gamma was found to abrogate the generation/activation of CD4+ CD25+ regulatory T cells by immunization with SEREX-defined self-Ag. CD4+ CD25+ T cells from these IFN-gamma-treated mice failed to exhibit immunosuppressive activity as measured by 1) increased number of pulmonary metastasis, 2) enhanced development of 3-methylcholanthrene-induced primary tumors, 3) suppression of peptide-specific T cell proliferation, and 4) enhanced expression of Foxp3. The important role of IFN-gamma produced by CD8+ T cells was shown in experiments demonstrating that CD4+ CD25+ T cells cotransferred with CD8+ T cells from IFN-gamma(-/-) mice, but not from wild-type BALB/c mice, became immunosuppressive and enhanced pulmonary metastasis when recipient animals were subsequently immunized with a SEREX-defined self-Ag and a CTL epitope. These findings support the idea that IFN-gamma regulates the generation/activation of CD4+ CD25+ regulatory T cells. 相似文献
4.
Hayashi Y Tsukumo S Shiota H Kishihara K Yasutomo K 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(9):5240-5248
T cell immune responses are regulated by the interplay between effector and suppressor T cells. Immunization with Ag leads to the selective expansion and survival of effector CD4(+) T cells with high affinity TCR against the Ag and MHC. However, it is not known if CD4(+)CD25(+) regulatory T cells (T(reg)) recognize the same Ag as effector T cells or whether Ag-specific TCR repertoire modification occurs in T(reg). In this study, we demonstrate that after a primary Ag challenge, T(reg) proliferate and TCR repertoire modification is observed although both of these responses were lower than those in conventional T cells. The repertoire modification of Ag-specific T(reg) after primary Ag challenge augmented the total suppressive function of T(reg) against TCR repertoire modification but not against the proliferation of memory CD4(+) T cells. These results reveal that T cell repertoire modification against a non-self Ag occurs in T(reg), which would be crucial for limiting excess primary and memory CD4(+) T cell responses. In addition, these studies provide evidence that manipulation of Ag-specific T(reg) is an ideal strategy for the clinical use of T(reg). 相似文献
5.
CD4+ CD25+ regulatory T cells inhibit the maturation but not the initiation of an autoantibody response 总被引:4,自引:0,他引:4
Fields ML Hondowicz BD Metzgar MH Nish SA Wharton GN Picca CC Caton AJ Erikson J 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(7):4255-4264
To investigate the mechanism by which T regulatory (Treg) cells may control the early onset of autoimmunity, we have used an adoptive transfer model to track Treg, Th, and anti-chromatin B cell interactions in vivo. We show that anti-chromatin B cells secrete Abs by day 8 in vivo upon provision of undeviated, Th1- or Th2-type CD4+ T cell help, but this secretion is blocked by the coinjection of CD4+ CD25+ Treg cells. Although Treg cells do not interfere with the initial follicular entry or activation of Th or B cells at day 3, ICOS levels on Th cells are decreased. Furthermore, Treg cells must be administered during the initial phases of the Ab response to exert full suppression of autoantibody production. These studies indicate that CD25+ Treg cells act to inhibit the maturation, rather than the initiation, of autoantibody responses. 相似文献
6.
CD4+CD25+ regulatory T cells specific for a thymus-expressed antigen prevent the development of anaphylaxis to self 总被引:1,自引:0,他引:1
Scabeni S Lapilla M Musio S Gallo B Ciusani E Steinman L Mantegazza R Pedotti R 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(7):4433-4440
A role for CD4(+)CD25(+) regulatory T cells (Tregs) in the control of allergic diseases has been postulated. We developed a mouse model in which anaphylaxis is induced in SJL mice by immunization and challenge with the fragment of self myelin proteolipid protein (PLP)(139-151), that is not expressed in the thymus, but not with fragment 178-191 of the same protein, that is expressed in the thymus. In this study, we show that resistance to anaphylaxis is associated with naturally occurring CD4(+)CD25(+) Tregs specific for the self peptide expressed in the thymus. These cells increase Foxp3 expression upon Ag stimulation and suppress peptide-induced proliferation of CD4(+)CD25(-) effector T cells. Depletion of Tregs with anti-CD25 in vivo significantly diminished resistance to anaphylaxis to PLP(178-191), suggesting an important role for CD4(+)CD25(+) Tregs in preventing the development of allergic responses to this thymus-expressed peptide. These data indicate that naturally occurring CD4(+)CD25(+) Tregs specific for a peptide expressed under physiological conditions in the thymus are able to suppress the development of a systemic allergic reaction to self. 相似文献
7.
CD4+ CD25+ regulatory T cell repertoire formation in response to varying expression of a neo-self-antigen 总被引:3,自引:0,他引:3
Lerman MA Larkin J Cozzo C Jordan MS Caton AJ 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(1):236-244
We have examined the development of self-peptide-specific CD4+ CD25+ regulatory T cells in lineages of transgenic mice that express the influenza virus PR8 hemagglutinin (HA) under the control of several different promoters (HA transgenic mice). By mating these lineages with TS1-transgenic mice expressing a TCR that recognizes the major I-E(d)-restricted determinant from HA (site 1 (S1)), we show that S1-specific T cells undergo selection to become CD4+ CD25+ regulatory T cells in each of the lineages, although in varying numbers. In some lineages, S1-specific CD4+ CD25+ regulatory T cells are highly abundant; indeed, TS1xHA-transgenic mice can contain as many S1-specific CD4+ T cells as are present in TS1 mice, which do not express the neo-self HA. In another lineage, however, S1-specific thymocytes are subjected to more extensive deletion and far fewer S1-specific CD4+ CD25+ regulatory T cells accumulate in the periphery. We show that radioresistant stromal cells can direct both deletion and CD4+ CD25+ regulatory T cell selection of S1-specific thymocytes. Interestingly, even though their numbers can vary, the S1-specific CD4+ CD25+ regulatory T cells in all cases coexist with clonally related CD4+ CD25- T cells that lack regulatory function. These findings show that the formation of the CD4+ CD25+ regulatory T cell repertoire is sensitive to variations in the expression of self-peptides. 相似文献
8.
9.
10.
CD4+CD25+ regulatory T cells in HIV infection 总被引:9,自引:0,他引:9
The immune system faces the difficult task of discerning between foreign, potentially pathogen-derived antigens and self-antigens. Several mechanisms, including deletion of self-reactive T cells in the thymus, have been shown to contribute to the acceptance of self-antigens and the reciprocal reactivity to foreign antigens. Over the last decade it has become increasingly clear that CD4(+)CD25(+) T(Reg) cells are crucial for maintenance of T cell tolerance to self-antigens in the periphery, and to avoid development of autoimmune disorders. Recently, evidence has also emerged that demonstrates that CD4(+)CD25(+) T(Reg) cells can also suppress T cell responses to foreign pathogens, including viruses such as HIV. In this article we review the current knowledge and potential role of CD4(+)CD25(+) T(Reg) cells in HIV infection. 相似文献
11.
Wohlfert EA Callahan MK Clark RB 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(2):1059-1065
Cbl-b(-/-) mice have signaling defects that result in CD28-independent T cell activation, increased IL-2 production, hyper-reactive T cells, and increased autoimmunity. Although the increased autoimmunity in these mice is believed to result from the hyper-reactive T cells, the mechanisms leading from T cell hyper-reactivity to autoimmunity remain unclear. Specifically, the function and interaction of CD4(+)CD25(+) regulatory T cells (T(reg)) and CD4(+)CD25(-) effector T cells (T(eff)) in Cbl-b(-/-) mice have not been examined. We now report that Cbl-b(-/-) CD4(+)CD25(+) T(reg) exhibit normal regulatory function in vitro. In contrast, the in vitro response of Cbl-b(-/-) CD4(+)CD25(-) T(eff) is abnormal, in that it is not inhibited by either Cbl-b(-/-) or wild-type T(reg). This resistance of Cbl-b(-/-) T(eff) to in vitro regulation is seen at the levels of both DNA synthesis and cell division. In addition to this resistance to CD4(+)CD25(+) T(reg), Cbl-b(-/-) T(eff) demonstrate in vitro resistance to inhibition by TGF-beta. This second form of resistance in Cbl-b(-/-) T(eff) is seen despite the expression of normal levels of type II TGF-beta receptors and normal levels of phosphorylated Smad3 after TGF-beta stimulation. Coupled with recent reports of resistance to T(reg) in T(eff) exposed to LPS-treated dendritic cells, our present findings suggest that resistance to regulation may be a relevant mechanism in both normal immune function and autoimmunity. 相似文献
12.
BackgroundSynthetic peptides, representing CD4+ T cell epitopes, derived from the primary sequence of allergen molecules have been used to down-regulate allergic inflammation in sensitised individuals. Treatment of allergic diseases with peptides may offer substantial advantages over treatment with native allergen molecules because of the reduced potential for cross-linking IgE bound to the surface of mast cells and basophils.ConclusionThis study provides evidence for the induction of a population of CD4+ T cells with suppressor/regulatory activity following PIT. Furthermore, up-regulation of cell surface levels of CD5 may contribute to reduced reactivity to allergen. 相似文献
13.
Makita S Kanai T Oshima S Uraushihara K Totsuka T Sawada T Nakamura T Koganei K Fukushima T Watanabe M 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(5):3119-3130
It is well known that immune responses in the intestine remain in a state of controlled inflammation, suggesting that not only active suppression by regulatory T cells plays an important role in the normal intestinal homeostasis, but also its dysregulation leads to the development of inflammatory bowel disease. In this study, we demonstrate that the CD4(+)CD25(bright) T cells reside in the human intestinal lamina propria (LP) and functionally retain regulatory activities. All human LP CD4(+) T cells regardless of CD25 expression constitutively expressed CTLA-4, glucocorticoid-induced TNFR family-related protein, and Foxp3 and proliferate poorly. Although LP CD4(+)CD25(-) T cells showed an activated and anergic/memory phenotype, they did not retain regulatory activity. In LP CD4(+)CD25(+) T cells, however, cells expressing CD25 at high levels (CD4(+)CD25(bright)) suppressed the proliferation and various cytokine productions of CD4(+)CD25(-) T cells. LP CD4(+)CD25(bright) T cells by themselves produced fewer amounts of IL-2, IFN-gamma, and IL-10. Interestingly, LP CD4(+)CD25(bright) T cells with regulatory T activity were significantly increased in patients with active inflammatory bowel disease. These results suggest that CD4(+)CD25(bright) T cells found in the normal and inflamed intestinal mucosa selectively inhibit the host immune response and therefore may contribute to the intestinal immune homeostasis. 相似文献
14.
Bacterial superantigens are potent T cell activators. In humans they cause toxic shock and scarlet fever, and they are implicated in Kawasaki's disease, autoimmunity, atopy, and sepsis. Their function remains unknown, but it may be to impair host immune responses increasing bacterial carriage and transmission. Regulatory (CD25(+)FOXP3(+)) T cells (Tregs) play a role in controlling inflammatory responses to infection. Approximately 2% of circulating T cells are naturally occurring Tregs (nTregs). Conventional Ag stimulation of naive FOXP3(-) T cells induces Ag-specific Tregs. Polyclonal T cell activation has been shown to produce non-Ag-specific Tregs. Because superantigens are unique among microbial virulence factors in their ability to trigger polyclonal T cell activation, we wanted to determine whether superantigen stimulation of T cells could induce non-Ag-specific Tregs. We assessed the effect of superantigen stimulation of human T cells on activation, regulatory markers, and cytokine production by flow cytometry and T cell suppression assays. Stimulation of PBMCs with staphylococcal exotoxin A and streptococcal pyrogenic exotoxins A and K/L resulted in dose-dependent FOXP3 expression. Characterization of this response for streptococcal pyrogenic exotoxin K/L confirmed its Vβ specificity, that CD25(+)FOXP3(+) cells arose from CD25(-) T cells and required APCs. These cells had increased CTLA-4 and CD127 expression, typical of the recently described activated converted Treg-like cells, and exhibited functional suppressor activity comparable to nTregs. Superantigen-stimulated CD25(+)FOXP3(+) T cells expressed IL-10 at lower superantigen concentrations than was required to trigger IFN-γ production. This study provides a mechanism for bacterial evasion of the immune response through the superantigen induction of Tregs. 相似文献
15.
Chai JG Coe D Chen D Simpson E Dyson J Scott D 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(2):858-869
CD4+CD25+ T regulatory cells (Tregs) can actively suppress immune responses and thus have substantial therapeutical potential. Clinical application is, however, frustrated by their scarcity, anergic status, and lack of defined specificity. We found that a single injection of a small number of expanded but not fresh HY-specific Tregs protected syngeneic male skin grafts from rejection by immune-competent recipients. The expanded Tregs were predominantly located in the grafts and graft-draining lymph nodes. In vitro expanded Tregs displayed a phenotype of CD25highCD4lowFoxp3+CTLA4+, and also up-regulated IL10 and TGFbeta while down-regulating IFN-gamma, GM-CSF, IL5, and TNF-alpha production. Furthermore, expanded Tregs appeared to express a reduced level of Foxp3, which could be prevented by adding TGFbeta to the culture, and they also tended to lose Foxp3 following the repeated stimulation. Finally, a proportion of expanded HY-specific Tregs secreted IL2 in response to their cognate peptide, and this finding could be confirmed using Tregs from Foxp3GFP reporter mice. We not only demonstrated that expanded Tregs are superior to fresh Tregs in suppressing T cell responses against alloantigens, but also revealed some novel immunobiological properties of expended Tregs which are very instructive for modifying current Treg expansion procedures. 相似文献
16.
Functional maturation of CD4+CD25+CTLA4+CD45RA+ T regulatory cells in human neonatal T cell responses to environmental antigens/allergens 总被引:5,自引:0,他引:5
Thornton CA Upham JW Wikström ME Holt BJ White GP Sharp MJ Sly PD Holt PG 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(5):3084-3092
A number of laboratories have reported cord blood T cell responses to ubiquitous environmental Ags, including allergens, by proliferation and cytokine secretion. Moreover, the magnitude of these responses has been linked with risk for subsequent expression of allergy. These findings have been widely interpreted as evidence for transplacental priming and the development of fetal T memory cells against Ags present in the maternal environment. However, we present findings below that suggest that neonatal T cell responses to allergens (and other Ags) differ markedly from those occurring in later life. Notably, in contrast to allergen-responsive adult CD4(+) T cell cultures, responding neonatal T cell cultures display high levels of apoptosis. Comparable responses were observed against a range of microbial Ags and against a parasite Ag absent from the local environment, but not against autoantigen. A notable finding was the appearance in these cultures of CD4(+)CD25(+)CTLA4(+) T cells that de novo develop MLR-suppressive activity. These cells moreover expressed CD45RA and CD38, hallmarks of recent thymic emigrants. CFSE-labeling studies indicate that the CD4(+)CD25(+) cells observed at the end of the culture period were present in the day 0 starting populations, but they were not suppressive in MLR responses. Collectively, these findings suggest that a significant component of the reactivity of human neonatal CD4(+) T cells toward nominal Ag (allergen) represents a default response by recent thymic emigrants, providing an initial burst of short-lived cellular immunity in the absence of conventional T cell memory, which is limited in intensity and duration via the parallel activation of regulatory T cells. 相似文献
17.
Curotto de Lafaille MA Lino AC Kutchukhidze N Lafaille JJ 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(12):7259-7268
Naturally occurring CD4(+) regulatory T cells are generally identified through their expression of CD25. However, in several experimental systems considerable T(reg) activity has been observed in the CD4(+)CD25(-) fraction. Upon adoptive transfer, the expression of CD25 in donor-derived cells is not stable, with CD4(+)CD25(+) cells appearing in CD4(+)CD25(-) T cell-injected animals and vice versa. We show in this study that CD25(+) cells arising from donor CD25(-) cells upon homeostatic proliferation in recipient mice express markers of freshly isolated T(reg) cells, display an anergic state, and suppress the proliferation of other cells in vitro. The maintenance of CD25 expression by CD4(+)CD25(+) cells depends on IL-2 secreted by cotransferred CD4(+)CD25(-) or by Ag-stimulated T cells in peripheral lymphoid organs. 相似文献
18.
The thymus-derived CD4(+)CD25(+) T cells belong to a subset of regulatory T cells potentially capable of suppressing the proliferation of pathogenic effector T cells. Intriguingly, these suppressor cells are themselves anergic, proliferating poorly to mitogenic stimulation in culture. In this study, we find that the 4-1BB costimulator receptor, best known for promoting the proliferation and survival of CD8(+) T cells, also induces the proliferation of the CD4(+)CD25(+) regulatory T cells both in culture and in vivo. The proliferating CD4(+)CD25(+) T cells produce no detectable IL-2, suggesting that 4-1BB costimulation of these cells does not involve IL-2 production. The 4-1BB-expanded CD4(+)CD25(+) T cells are functional, as they remain suppressive to other T cells in coculture. These results support the notion that the peripheral expansion of the CD4(+)CD25(+) T cells is controlled in part by costimulation. 相似文献
19.
IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells 总被引:21,自引:0,他引:21
Vieira PL Christensen JR Minaee S O'Neill EJ Barrat FJ Boonstra A Barthlott T Stockinger B Wraith DC O'Garra A 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(10):5986-5993
20.
Human CD4+CD25+ regulatory T cells share equally complex and comparable repertoires with CD4+CD25- counterparts 总被引:3,自引:0,他引:3
Kasow KA Chen X Knowles J Wichlan D Handgretinger R Riberdy JM 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(10):6123-6128
CD4(+)CD25(+) T cells are critical mediators of peripheral immune tolerance. However, many developmental and functional characteristics of these cells are unknown, and knowledge of human regulatory T cells is particularly limited. To better understand how human CD4(+)CD25(+) T cells develop and function, we examined the diversity of CD4(+)CD25(+) and CD4(+)CD25(-) T cell repertoires in both thymus and peripheral blood. Levels of T receptor excision circles (TREC) were comparable in purified CD4(+)CD25(+) and CD4(+)CD25(-) thymic populations, but were significantly higher than those in samples derived from peripheral blood, consistent with murine studies demonstrating thymic development of CD4(+)CD25(+) regulatory T cells. Surprisingly, CD4(+)CD25(-) T cells isolated from peripheral blood had greater TREC quantities than their CD4(+)CD25(+) counterparts, supporting the possibility of extrathymic expansion as well. CD4(+)CD25(+) and CD4(+)CD25(-) T cells from a given individual showed overlapping profiles with respect to diversity by Vbeta staining and spectratyping. Interestingly, CD4(+)CD25(+) T cells have lower quantities of CD3 than CD4(+)CD25(-) T cells. Collectively, these data suggest that human CD4(+)CD25(+) T cells recognize a similar array of Ags as CD4(+)CD25(-) T cells. However, reduced levels of TCR on regulatory T cells suggest different requirements for activation and may contribute to how the immune system regulates whether a particular response is suppressed or augmented. 相似文献