首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe here the use of a sensitive and accurate multiprobe V beta RNase protection assay in characterizing the expression levels of 17 V beta genes in separated CD4+ and CD8+ subsets of selected mouse strains. The IE-reactive V beta genes (V beta s 11, 12, 5.1 and 16) showed various patterns of skewed subset expression in different strains, suggesting additional influences of IA, class I, and non-MHC genes in the selection process. Clonal deletion of V beta 11- and V beta 12-bearing T cells, among others, was skewed strongly towards the CD4+ subset in many IE+ mouse strains, supporting the notion that negative selection can cause incomplete, subset biased, V beta clonal deletions. Broad analysis in separated CD4+ and CD8+ subsets gave improved resolution of V beta repertoire selection, and revealed significant strain and/or subset specific skewing for additional V beta genes; with consistent bias towards higher expression of V beta 7 and V beta 13 in the CD8+ subset, and V beta 15 in the CD4+ subset of most mouse strains. The influence of diverse non-MHC ligands in V beta repertoire selection was further illustrated by the identification of unique V beta repertoires for six different MHC-identical (H2k) strains. Such polymorphisms in TCR repertoire expression may help to define better disease susceptibility phenotypes.  相似文献   

2.
Previous staining studies with TCR V alpha 11-specific mAbs showed that V alpha 11.1/11.2 (AV11S1 and S2) expression was selectively favored in the CD4+ peripheral T cell population. As this phenomenon was essentially independent of the MHC haplotype, it was suggested that AV11S1 and S2 TCRs exert a preference for recognition of class II MHC molecules. The V alpha segment of the TCR alpha-chain is suggested to have a primary role in shaping the T cell repertoire due to selection for class I or II molecules acting through the complementarity determining regions (CDR) 1 alpha and CDR2 alpha residues. We have analyzed the repertoire of V alpha 11 family members expressed in C57BL/6 mice and have identified a new member of this family; AV11S8. We show that, whereas AV11S1 and S2 are more frequent in CD4+ cells, AV11S3 and S8 are more frequent in CD8+ cells. The sequences in the CDR1 alpha and CDR2 alpha correlate with differential expression in CD4+ or CD8+ cells, a phenomenon that is also observed in BALB/c mice. With no apparent restriction in TCR J alpha usage or CDR3 alpha length in C57BL/6, these findings support the idea of V alpha-dependent T cell repertoire selection through preferential recognition of MHC class I or class II molecules.  相似文献   

3.
Most, but not all, V beta 8.1+ T cells respond to M1s-1 and are clonally deleted in the thymus of M1s-1-expressing animals. To formally examine the role of the TCR alpha-chain in reactivity and tolerance to M1s-1, we have analyzed M1s-1 reactivity in a large panel of CD4+ hybridomas generated from TCR V beta 8.1 transgenic mice, that express an identical, potentially M1s-1-reactive beta-chain. The data show that the alpha-chain strongly influences the M1s-1 reactivity of the hybridomas and that the differences in reactivity had relevance for tolerance. Thus, V alpha 11+ hybridiomas were biased toward M1s-1 reactivity and V alpha 11+ T cells were correspondingly absent from the peripheral repertoire of M1s-1-expressing transgenic mice. V alpha 2+ hybridomas, on the other hand, were biased against M1s-1 reactivity, and V alpha 2+ T cells were correspondingly amplified in the M1s-1-expressing transgenic mice. Structural analysis of the alpha-chains revealed that the M1s-1 reactivity of the V alpha 11+ hybridomas segregated precisely with family member, such that V alpha 11.1+ hybridomas were M1s-1-reactive and V alpha 11.3+ hybridomas were not M1s-1-reactive. On the other hand, there was not a clear correlation between family member and M1s-1 reactivity in the V alpha 2+ hybridomas. The hybridomas also showed striking variation in their reactivity to staphylococcal enterotoxin B (SEB), and the SEB reactivity of the V alpha 11+ hybridomas correlated precisely with family member and with M1s-1 reactivity. In contrast, there was not a clear correlation with V alpha 2+ alpha-chain structure and SEB reactivity. Also, there was no correlation between M1s-1 reactivity and SEB reactivity in individual V alpha 2+ hybridomas, suggesting that the recognition of the two superantigens by the same TCR is not equivalent. Taken together, these data define a role for the TCR alpha-chain in superantigen reactivity and T cell tolerance, and provide a structural explanation for the different fates of M1s-1-reactive T cells in normal and transgenic mice.  相似文献   

4.
Allelic polymorphism in TCR loci may play an important role in shaping the T cell repertoire and in disease susceptibility. We have used a combination of antibody and sequence analysis to investigate polymorphism in the murine V alpha 11 family. Two different antibodies have been analyzed that recognize particular V alpha 11 family members of the V alpha b and V alpha d haplotypes. One antibody shows J alpha dependency, suggesting a conformational element to the epitope. Investigation of the anti-V alpha 11 staining pattern on different mouse strains indicates that there is a marked influence of MHC haplotype on V alpha 11 selection and that V alpha 11 is preferentially expressed on CD4+ cells. Sequence analysis of V alpha 11 genes from the V alpha a, V alpha b, and V alpha d haplotypes shows two potential regions for the haplotype-specific epitopes. The relatedness of the different V alpha 11 family members from different haplotypes suggests that the V alpha 11.1/11.2 gene duplication is relatively recent, but that V alpha 11.3 separated much earlier. Differences between V alpha 11.3 and V alpha 11.1/11.2 are concentrated in the putative complementarity determining regions (CDR), whereas differences between alleles are not clearly clustered. However, the V alpha 11.1a and V alpha 11.1d alleles differ from V alpha 11.1b and V alpha 11.2b in CDR1. A V alpha 11.2-expressing anti-cytochrome c T cell has the same V-J junction as a V alpha 11.1-bearing cell with a similar fine specificity, indicating that V alpha 11.1b and V alpha 11.2b do not contribute different Ag specificities.  相似文献   

5.
Using TCR V beta 5 transgenic mice as a model system, we demonstrate that the induction of peripheral tolerance can mold the TCR repertoire throughout adult life. In these mice, three distinct populations of peripheral T cells are affected by chronic selective events in the lymphoid periphery. First, CD4+V beta 5+ T cells are deleted in the lymphoid periphery by superantigens encoded by mouse mammary tumor viruses-8 and -9 in an MHC class II-dependent manner. Second, mature CD8+V beta 5+ T cells transit through a CD8lowV beta 5low deletional intermediate during tolerance induction by a process that depends upon neither mouse mammary tumor virus-encoded superantigens nor MHC class II expression. Third, a population of CD4-CD8-V beta 5+ T cells arises in the lymphoid periphery in an age-dependent manner. We analyzed the TCR V alpha repertoire of each of these cellular compartments in both V beta 5 transgenic and nontransgenic C57BL/6 mice as a function of age. This analysis revealed age-related changes in the expression of V alpha families among different cellular compartments, highlighting the dynamic state of the peripheral immune repertoire. Our work indicates that the chronic processes maintaining peripheral T cell tolerance can dramatically shape the available TCR repertoire.  相似文献   

6.
Analysis of TCR of a series of CD4-8- (double negative; DN) alpha beta T cell lines induced with IL-3 revealed that their V gene usage was biased for V alpha 4 and V beta 2. This has been confirmed in the primary short-term cultures. Thus, IL-3 induced the generation of DN alpha beta T cells with predominant V beta 2 gene expression from the CD4+/CD8+ T cell-depleted spleen or bone marrow (BM) cells of both normal and nude BALB/c mice within 10 days. It was further indicated that the V beta 2+ beta-chain genes contained few junctional N regions in both IL-3-induced primary DN alpha beta T cells and continuous lines. Search for the in vivo counterpart of in vitro IL-3-induced DN alpha beta T cells revealed that BM, but not spleens, of normal BALB/c and B6 mice did contain a significant proportion of DN alpha beta T cells, and that the majority of them expressed V beta 2+ beta-chain genes with few junctional N regions. The presence of V beta 2+ DN alpha beta T cells was similarly observed in the BM of BALB/c nude mice, but their proportion varied markedly among various strains of mice, which was not linked to H-2 haplotypes. The results indicated that V beta 2+ DN alpha beta T cells in the BM represented one of the thymus-independent T cell populations, whose development was under the major histocompatibility Ag complex-unlinked genetic control. TCR of these T cells were shown to be functional as judged by the proliferative response to anti-V beta 2 antibody. Taken together, present results suggested that IL-3 could induce differentiation and/or proliferation of DN alpha beta T cells with uniquely limited repertoire, which existed preferentially in BM in vivo, and implied the possible involvement of extrathymic endogenous ligands as a positive selection force.  相似文献   

7.
Intraepithelial lymphocytes (IEL) of the small intestine are anatomically positioned to be in the first line of cellular defense against enteric pathogens. Therefore, determining the origin of these cells has important implications for the mechanisms of T cell maturation and repertoire selection. Recent evidence suggests that murine CD8 alpha alpha intestinal IELs (iIELs) can mature and undergo selection in the absence of a thymus. We analyzed IEL origin by cell transfer, using two congenic chicken strains. Embryonic day 14 and adult thymocytes did not contain any detectable CD8 alpha alpha T cells. However, when TCR(+) thymocytes were injected into congenic animals, they migrated to the gut and developed into CD8alphaalpha iIELs, while TCR(-) T cell progenitors did not. The TCR V beta 1 repertoire of CD8 alpha alpha(+) TCR V beta 1(+) iIELs contained only part of the TCR V beta 1 repertoire of total iIELs, and it exhibited no new members compared with CD8(+) T cells in the thymus. This indicated that these T cells emigrated from the thymus at an early stage in their developmental process. In conclusion, we show that while CD8 alpha alpha iIELs originate in the thymus, T cells acquire the expression of CD8 alpha alpha homodimers in the gut microenvironment.  相似文献   

8.
Intrathymic tolerance results in elimination of T cells bearing self-reactive TCR V beta regions in mice expressing certain combinations of I-E and minor lymphocyte stimulatory (Mls) phenotypes. To determine if autoimmune strains of mice have a defect in intrathymic deletion of self-reactive TCR V beta regions, expression of V beta 3, V beta 6, V beta 8.1, and V beta 11 were examined in lpr/lpr and +/+ strains of mice; MRL/MpJ(H-2K, I-E+, Mlsb,), C57BL/6J(H-2b, I-E-, Mlsb,), C3H/HeJ(H-2k, I-E+, Mlsc), AKR/J(H-2k, I-E+, Mlsa); and in autoimmune NZB/N(H-2d, I-E+, Mlsa) and BXSB(H-2b, I-E-, Mlsb) mice. The results suggest that, during intrathymic development, self-reactive T cells are deleted in autoimmune strains of mice as found in normal control strains of mice. However, the TCR V beta repertoire is skewed in autoimmune strains compared to normal strains of mice. For example, MRL-lpr/lpr mice, but not other lpr/lpr strains, had increased expression of V beta 6 relative to expression in control MRL(-)+/+ mice, which is associated with collagen-induced arthritis. These data are consistent with a model of normal affinity for negative selection of self-reactive T cells in the thymus of autoimmune strains of mice followed by expansion of autoreactive T cell clones in the peripheral lymphoid organs. The peripheral lymphoid organs of lpr/lpr mice contain an expanded population of abnormal CD4-, CD8-, 6B2+ T cells. Elimination of self-reactive peripheral T cells suggests that these abnormal cells are derived from a CD4+ subpopulation in the thymus. Flow cytometry analysis of peripheral lymph node T cells from MRL-lpr/lpr mice reveal three populations of CD4+ T cells expressing low, intermediate and high intensity of B220 (6B2). This supports the hypothesis that in lpr/lpr mice, self-reactive CD4+ T cells are eliminated in the thymus, and that these cells lose expression of CD4 and acquire expression of 6B2 in the periphery.  相似文献   

9.
We describe a subset of CD4+/CD3+ human T lymphocytes that demonstrated a remarkably limited TCR repertoire responding to alloantigen stimulation. These cells have been characterized previously by their granular morphology and expression of CD11b but not CD28. Whereas multiple CD28+/CD4+ alloproliferative cloned cell lines generated by culture at limiting dilution immediately after isolation from peripheral blood each had a unique TCR-beta gene rearrangement, 19 of 21 CD11b+/CD4+ clones showed identical TCR-beta, and gamma gene rearrangements. In conventional MLR, the CD11b+/CD4+ cells responded poorly after stimulation with some HLA-class II Ag, and staining with a TCR Id-specific antibody and DNA blot hybridization suggested that the responding CD11b+/CD4+ cells typically contained predominant clonal populations. Clones of CD11b+/CD4+ cells with different TCR gene rearrangements showed closely similar patterns of responses when stimulated by a panel of allogeneic PBMC, but the response pattern did not correspond to that of any known HLA-class II Ag. These findings indicate that CD11b+/CD4+ cells have a limited alloproliferative repertoire characterized by predominant recognition of a limited number of undefined determinants that appear to be expressed in association with multiple distinct HLA-class II Ag. Our results suggest that CD11b+/CD4+ cells are selected for clonal reactivity by processes distinct from those for CD28+/CD4+ cells.  相似文献   

10.
We have generated a rat mAb, TR310, which recognizes a determinant encoded by the murine V beta 7 gene segment of the TCR. TR310 immunoprecipitates TCR from cell lysates, co-modulates with CD3, and can be used for immunofluorescence staining of T cells. By using this antibody, we found that the average percentage of V beta 7+ peripheral T cells in Mls-1b mice was 3.8%, but only 0.8% in Mls-1a mice. A similar difference was also observed in the mature TCRhi thymocyte subsets, suggesting that V beta 7+ T cells are deleted during intrathymic maturation in Mls-1a mice. TR310 should prove to be a valuable reagent in further studies of the TCR repertoire and the analysis of factors which alter it.  相似文献   

11.
We have characterized CD4-CD8- double negative (DN) thymocytes that express TCR-alpha beta and represent a minor thymocyte subpopulation expressing a markedly skewed TCR repertoire. We found that DN TCR-alpha beta + thymocytes resemble mature T cells in that they (a) are phenotypically CD2hiCD5hiQa2+HSA-, (b) appear late in ontogeny, and (c) are susceptible to cyclosporin A-induced maturation arrest. In addition, we found that DNA sequences 5' to the CD8 alpha gene were demethylated relative to their germline state, suggesting that DN TCR-alpha beta + thymocytes are derived from cells that had at one time expressed their CD8 alpha gene locus. Because DN TCR-alpha beta + thymocytes are known to express an unusual TCR repertoire with significant overexpression of V beta 8, we were interested in examining the possible role played by self-Ag in shaping their TCR repertoire. It has been suggested that DN TCR-alpha beta + thymocytes are derived from potentially self-reactive thymocytes that have escaped clonal deletion by down-regulating their surface expression of CD4 and/or CD8 determinants. However, apparently inconsistent with such an hypothesis, we found that the frequency of DN thymocytes expressing various anti-self TCR (V beta 6, V beta 8.1, V beta 11, V beta 17a) were not increased in strains expressing their putative self-Ag, but instead were either unaffected or significantly reduced in those strains. With regard to V beta 8 expression among DN TCR-alpha beta + thymocytes, V beta 8 overexpression in DN TCR-alpha beta + thymocytes appeared to be independent of, and superimposed on, the developmental appearance of the basic DN thymocyte repertoire. Even though V beta 8 overexpression appeared to be generated by a mechanism distinct from that generating the rest of the DN TCR-alpha beta + thymocyte repertoire, we found that super-Ag against which V beta 8 TCR react introduced into the neonatal differentiation environment also significantly reduced, rather than increased, the frequency of DN TCR-alpha beta + V beta 8+ thymocytes. Thus, the present study is consistent with DN TCR-alpha beta + thymocytes being mature cells derived from CD8+ precursors, and documents that their TCR repertoire can be influenced, at least negatively, by either self-Ag or Ag introduced into the neonatal differentiation environment. However, we found no evidence to support the hypothesis that DN TCR-alpha beta + thymocytes are enriched in cells expressing TCR reactive against self-Ag.  相似文献   

12.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

13.
CD1d-deficient (CD1d-/-) mouse lymphocytes were analyzed to classify the natural killer T (NKT) cells without reactivity to CD1d. The cells bearing a V(alpha)19.1-J(alpha)26 (AV19-AJ33) invariant TCR alpha chain, originally found in the peripheral blood lymphocytes, were demonstrated to be abundant in the NK1.1+ but not NK1.1- T cell population isolated from CD1d-/- mice. Moreover, more than half (11/21) of the hybrid cell lines established from CD1d-/- NKT cells expressed the V(alpha)19.1-J(alpha)26 invariant TCR alpha chain. The expression of the invariant V(alpha)19.1-J(alpha)26 mRNA was absent in beta2-microglobulin-deficient mice. Collectively, the present findings suggest the presence of a second NKT cell repertoire characterized by an invariant TCR alpha chain (V(alpha)19.1-J(alpha)26) that is selected by an MHC class I-like molecule other than CD1d.  相似文献   

14.
IL-4-producing gamma delta thymocytes in normal mice belong to a distinct subset of gamma delta T cells characterized by low expression of Thy-1. This gamma delta thymocyte subset shares a number of phenotypic and functional properties with the NK T cell population. Thy-1dull gamma delta thymocytes in DBA/2 mice express a restricted repertoire of TCRs that are composed of the V gamma 1 gene product mainly associated with the V delta 6.4 chain and exhibit limited junctional sequence diversity. Using mice transgenic for a rearranged V gamma 1J gamma 4C gamma 4 chain and a novel mAb (9D3) specific for the V delta 6.3 and V delta 6.4 murine TCR delta chains, we have analyzed the peripheral localization and functional properties of gamma delta T cells displaying a similarly restricted TCR repertoire. In transgenic mice, IL-4 production by peripheral gamma delta T cells was confined to the gamma delta+9D3+ subset, which contains cells with a TCR repertoire similar to that found in Thy-1dull gamma delta thymocytes. In normal DBA/2 mice such cells represent close to half of the gamma delta T cells present in the liver and around 20% of the splenic gamma delta T cells.  相似文献   

15.
Developing T cells undergo distinct selection processes that determine the TCR repertoire. Positive selection involves the differentiation of immature thymocytes capable of recognizing antigens complexed with self-MHC molecules to mature T cells. Besides the central role of TCR engagement by MHC in triggering selection; the interaction of CD8 and CD4 with MHC class I and class II, respectively; is thought to be important in regulating the selection process. To study potential mechanisms involved in positive selection of CD8+ cells, we have analyzed mice expressing a unique transgenic TCR. The transgenic receptor recognizes the HY male Ag in the context of the MHC class I molecule, H2-Db. We describe that CD8 and the TCR are selectively associated in thymocytes of mice expressing the restricting MHC, but not in thymocytes of mice expressing a nonrestricting MHC. pp56lck and pp59fyn, the tyrosine kinases associated with CD8 and TCR, respectively, were found to be present in this complex in an activated form. No comparable TCR-CD4 complex formation was found in thymuses undergoing positive selection to CD8+ cells. The formation of a multimolecular complex between CD8 and TCR, in which pp56lck and pp59fyn are activated, may initiate specific signaling programs involved in the maturation of CD8+ cells.  相似文献   

16.
Experimental infection of C57BL/6 mice by Plasmodium yoelii sporozoites induced an increase of CD4-CD8- NK1.1+ TCR alpha beta int cells and a down-regulation of CD4+ NK1.1+ TCR alpha beta int cells in the liver during the acute phase of the infection. These cells showed an activated CD69+, CD122+, CD44high, and CD62Lhigh surface phenotype. Analysis of the expressed TCRV beta segment repertoire revealed that most of the expanded CD4-CD8- (double-negative) T cells presented a skewed TCRV beta repertoire and preferentially used V beta 2 and V beta 7 rather than V beta 8. To get an insight into the function of expanded NK1.1+ T cells, experiments were designed in vitro to study their activity against P. yoelii liver stage development. P. yoelii-primed CD3+ NK1.1+ intrahepatic lymphocytes inhibited parasite growth within the hepatocyte. The antiplasmodial effector function of the parasite-induced NK1.1+ liver T cells was almost totally reversed with an anti-CD3 Ab. Moreover, IFN-gamma was in part involved in this antiparasite activity. These results suggest that up-regulation of CD4-CD8- NK1.1+ alpha beta T cells and down-regulation of CD4+ NK1.1+ TCR alpha beta int cells may contribute to the early immune response induced by the Plasmodium during the prime infection.  相似文献   

17.
18.
We have used a panel of murine mAb against chicken TCR and associated molecules to study the effect of cyclosporin A (CsA) on the ontogeny of the different sublineages of T cells. After injection of CsA (20 mg/kg/day from day 0 to 20) we observed a significant suppression of the normal maturation of the TCR2 (alpha beta TCR) cells in their transition from cortical CD4+CD8+ thymocytes to the mature single positive cells in the thymus medulla. The TCR3 subpopulation, a distinct form of alpha beta-like TCR in chickens, was inhibited from initially developing within the cortex by CsA, indicating that the TCR3 subpopulation is functionally distinct from the TCR2+ cells. In contrast, the maturation and peripheral emigration of TCR1 (gamma delta TCR) cells was unaffected by CsA treatment. Mature splenic T cells sorted for either TCR1+ or TCR2+ subsets were equally sensitive to CsA blockade of Con A-stimulated mitogenesis, indicating that there is no inherent difference in CsA sensitivity between these sublineages. Furthermore, no difference was detected in the expression of class II MHC Ag in thymi of birds treated with olive oil vs CsA. Inasmuch as the mechanism of CsA action appears to involve inhibition of TCR initiated signal transduction for lymphokine synthesis, these data indicate that a similar signaling is involved in thymic repertoire selection for TCR2. The lack of an effect on TCR1 cell maturation suggests that the TCR1 repertoire may not undergo selection in the thymus as do TCR2+ cells.  相似文献   

19.
We have recently developed a mAb designated anti-Ti gamma A, which was found to immunoprecipitate from the well characterized CD3+ TCR alpha/beta- F6C7 fetal clone a CD3-associated disulfide-linked gamma-glycoprotein. This antibody recognizes approximately 3% of adult peripheral lymphocytes and delineates a CD2+ CD3+ TCR alpha/beta- CD4- NKH1- subset where expression of CD8 appears to vary widely from one individual to another. In the present study, we have used anti-Ti gamma A mAb to assess whether gamma-chains expressed on these adult lymphocytes are used as functional R. The two activities which have been associated thus far with TCR gamma+ cells, that is, IL-2-dependent proliferation and non-MHC-restricted cytotoxicity, were investigated here by using either resting or activated Ti gamma A+ lymphocytes. On the resting state, these cells (which appear as a very homogeneous population of granular lymphocytes) mediate little if any NK activity that could not be augmented by anti-Ti gamma A mAb. In contrast, after initial stimulation by PHA plus rIL-2 and subsequent culture in the presence of IL-2, activated Ti gamma A+ lymphocytes were strongly lytic against a series of conventional NK target cell lines. This cytotoxic function was either blocked or enhanced by anti-Ti gamma A mAb, depending upon experimental conditions. With respect to proliferation, it was possible to induce responses of resting Ti gamma A+ lymphocytes with antibody-coated CNBr beads only in the presence of exogenous IL-2, whereas, in culture, the same cells proliferated directly and secreted IL-2 after treatment by anti-Ti gamma A beads. Taken together, these data demonstrate that a major subset of circulating CD3+ TCR alpha/beta- lymphocytes use protein products of T cell gamma rearranging genes as functional R structures.  相似文献   

20.
Fetal thymic organ cultures (FTOC) were tested as a model system to induce, in a polyclonal fashion, negative and positive thymic selection events. By flow cytometry, thymocytes developed in FTOC differed in several parameters from their in vivo differentiated counterparts. In particular, no clear distinction was possible between CD4+CD8+ immature cells with low TCR expression and mature CD4+ or CD8+ cells with high TCR expression. Thymocyte development in FTOC was manipulated with three different antibody reagents: anti-V beta 8 (F23.1), anti-Lyt-2.2 (19/178) and the quadroma derived bifunctional antibody HPHT-2, carrying one binding site of each. This antibody served also as a monovalent anti-V beta 8 reagent in FTOC from Lyt-2.1 mouse strains. Antibody 19/178 suppressed the development of single positive CD8+ cells, but only at very high concentrations. F23.1 and HPHT-2 suppressed the development of CD4+V beta 8+ and CD8+V beta 8+ thymocytes at relatively low concentrations giving rise to V beta 8 occupancies from about 2% upwards. Suppression was equally pronounced in cells with low and high TCR densities. Moreover, V beta 8 suppression occurred upon divalent and monovalent V beta 8 binding and was not significantly influenced by V beta 8-CD8 cross-linking. This suggests that ligation of the TCR alone is sufficient for clonal deletion. The data do not exclude a role for CD8 as an accessory adhesion molecule but suggest that exogenous cross-linking of CD8 to the TCR is not essential in transmembrane signaling for clonal deletion. At lower antibody concentrations giving rise to V beta 8 occupancies below detection, V beta 8-CD8 cross-linking by HPHT-2, but no divalent and monovalent V beta 8 ligation, induced an increase of CD8+V beta 8+ cells at the expense of CD4+ V beta 8+ cells with no change in the proportion of total V beta 8+ thymocytes. The latter effect was quantitatively of borderline significance but reproducible. These latter results are compatible with the hypothesis that cross-linking of the alpha beta TCR and CD8 on the thymocyte surface provides a maturation signal resulting in loss of CD4 from CD4+ CD8+ double positive immature thymocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号