首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antileishmanial antimonial drug urea stibamine was encapsulated in mannosylated and nonmannosylated liposomes and was tested against experimental leishmanial infection in hamsters. The study demonstrated that liposome encapsulation of urea stibamine enhanced its effectiveness, an effect which was greater when mannosylated liposomes were used.  相似文献   

2.
Although pentavalent antimonials are the first-line drug for treatment of visceral leishmaniasis all over the world, yet, in India, increasing number of patients are being reported to be unresponsive to sodium stibogluconate. Verapamil, a calcium channel blocker, affects drug uptake by preventing its efflux and thereby accumulation within the cell. In the present study, effect of verapamil on in vitro susceptibility of both promastigote and amastigote stages of 15 clinical isolates and standard strain of Leishmania donovani to sodium stibogluconate was evaluated by detection of acid phosphatase. Amastigotes were found more susceptible to sodium stibogluconate than the promastigotes (p<0.05) and in the presence of verapamil, IC(50) value of sodium stibogluconate was reduced only for those isolates, which had a higher IC(50). Verapamil alone did not have any effect on the parasites. The results indicate that amastigotes are more susceptible to sodium stibogluconate than promastigotes and verapamil can reverse the in vitro drug resistance of L. donovani clinical isolates to sodium stibogluconate.  相似文献   

3.
Topoisomerase II is an ATP-operated clamp that effects topological changes by capturing a double stranded DNA segment and transporting it through another DNA molecule. Despite the extensive use of topoisomerase II-targeted drugs in cancer chemotherapy and the impact of drug resistance on the efficacy of treatment, much remains unknown concerning the interactions between these agents and topoisomerase II. To identify the interaction of the bisdioxopiperazine dexrazoxane (ICRF-187) with topoisomerase II, we developed a rapid gel-filtration assay and characterized the binding of ((3)H)-dexrazoxane to human topoisomerase II alpha. Dexrazoxane binds to human topoisomerase II alpha in the presence of DNA and ATP with an apparent K(d) of 23 microM and a stoichiometry of 1 drug molecule per enzyme dimer. Various N-terminal single amino acid substitutions in human topoisomerase II alpha that were previously shown to confer specific bisdioxopiperazine resistance either totally abolished drug binding or resulted in less efficient binding. The effect of the various mutations on drug binding correlated well with their effect on drug resistance in vivo and in vitro. Interestingly, an altered active site tyrosine mutant of human topoisomerase II alpha, which is incapable of carrying out DNA strand passage, was unable to bind dexrazoxane, which agrees with the drug's proposed mechanism of action late in the topoisomerase II catalytic cycle. The direct correlation between the level of drug binding and dexrazoxane resistance is consistent with a decreased drug binding mechanism of action for these dexrazoxane resistance conferring mutations.  相似文献   

4.
This study aimed to evaluate the in vitro and in vivo leishmanicidal activity of an endemic Turkish plant and compare its efficacy with a reference drug. In addition to the in vitro activities of the ethanol, acidified and alkaloid extracts and furoquinoline alkaloids skimmianine and gamma-fagarine, in vivo antileishmanial activitiy of the acidified extract of Haplophyllum myrtifolium Boiss. (Rutaceae) were investigated against Leishmania tropica (L. tropica), a causative agent of cutaneous leishmaniasis. All the extracts and pure compounds showed in vitro inhibitory activity against the promastigotes of. L. tropica. The in vitro 50% inhibitory concentrations of y-fagarine, acidified extract, ethanol extract, skimmianine and alkaloid extract against promastigotes were determined as 8.7, 9.4, 10.9, 25.7 and 25.8 microg/ml respectively. In vivo results of Haplophyllum myrtifolium acidified extract showed that this plant has a limited effect on decreasing the lesion size of experimental mice infected with Leishmania tropica. To the best of our knowledge, this is the first time both the in vitro and in vivo antileishmanial activity of Haplophyllum mrytifolium have been reported in the same research.  相似文献   

5.
The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7) to import these nutrients. Probes 1–15 were originated by conjugating cytotoxic quinone fragments (II and III) with amino acids (i.e. arginine and lysine) by means of an amide linkage. The toxicity of the synthesized conjugates against Leishmania extracellular (promastigotes) and intracellular (amastigotes) forms was investigated, as well their inhibition of the relevant amino acid transporters. We observed that some conjugates indeed displayed toxicity against the parasites; in particular, 7 was identified as the most potent derivative (at concentrations of 1 µg/mL and 2.5 µg/mL residual cell viability was reduced to 15% and 48% in promastigotes and amastigotes, respectively). Notably, 6, while retaining the cytotoxic activity of quinone II, displayed no toxicity against mammalian THP1 cells. Transport assays indicated that the novel conjugates inhibited transport activity of lysine, arginine and proline transporters. Furthermore, our analyses suggested that the toxic conjugates might be translocated by the transporters into the cells. The non-toxic probes that inhibited transport competed with the natural substrates for binding to the transporters without being translocated. Thus, it is likely that 6, by exploiting amino acid transporters, can selectively deliver its toxic effects to Leishmania cells. This work provides the first evidence that amino acid transporters of the human pathogen Leishmania might be modulated by small molecules, and warrants their further investigation from drug discovery and chemical biology perspectives.  相似文献   

6.
Leishmania donovani promastigotes were grown to late log phase, washed and resuspended in iso-osmotic buffer containing L-arginine, and the rate of urea formation was then measured under various conditions. Addition of glucose or mannose activated urea formation, whereas 2-deoxyglucose inhibited and 6-deoxyglucose had no effect. Addition of alanine or of alpha-aminoisobutyrate inhibited urea formation, alanine causing a greater inhibition than alpha-aminoisobutyrate. Addition of leucine, proline, glycine, or lysine had no effect on urea formation. The presence of glutamate also increased the rate of urea formation from arginine, but to a lesser extent than did glucose. The presence of both glucose and alanine caused no net change in urea formation, whereas the inhibitory effect of alanine exceeded the activating effect of glutamate, so that a small inhibition in the rate of urea formation occurred in the presence of both alanine and glutamate. Cells grown to 3-day stationary phase had a markedly reduced rate of arginine catabolism to urea, but the activating effect of glucose and the inhibitory effect of alanine were qualitatively similar to their effects on late log phase cells. Addition of water to cells suspended in buffer also inhibited urea formation, but this appeared to be due primarily to the release of alanine caused by the hypo-osmotic stress. Addition of mannitol to cells suspended in buffer caused a small inhibition of arginine catabolism. Addition of dibutyrylcyclic AMP, 3',5'-cyclic GMP, phorbol myristic acid, or A23187 had no effect on the rate of urea formation from arginine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.

Background

In an endeavor to find an orally active and affordable antileishmanial drug, we tested the efficacy of a cationic amphiphilic drug, imipramine, commonly used for the treatment of depression in humans. The only available orally active antileishmanial drug is miltefosine with long half life and teratogenic potential limits patient compliance. Thus there is a genuine need for an orally active antileishmanial drug. Previously it was shown that imipramine, a tricyclic antidepressant alters the protonmotive force in promastigotes, but its in vivo efficacy was not reported.

Methodology/Principal Findings

Here we show that the drug is highly active against antimony sensitive and resistant Leishmania donovani in both promastigotes and intracellular amastigotes and in LD infected hamster model. The drug was found to decrease the mitochondrial transmembrane potential of Leishmania donovani (LD) promastigotes and purified amastigotes after 8 h of treatment, whereas miltefosine effected only a marginal change even after 24 h. The drug restores defective antigen presenting ability of the parasitized macrophages. The status of the host protective factors TNF α, IFN γ and iNOS activity increased with the concomitant decrease in IL 10 and TGF β level in imipramine treated infected hamsters and evolution of matured sterile hepatic granuloma. The 10-day therapeutic window as a monotherapy, showing about 90% clearance of organ parasites in infected hamsters regardless of their SSG sensitivity.

Conclusions

This study showed that imipramine possibly qualifies for a new use of an old drug and can be used as an effective orally active drug for the treatment of Kala-azar.  相似文献   

8.
Many intercalative antitumor drugs have been shown to cleave DNA indirectly through their specific effect on the stabilization of a cleavable complex formed between mammalian DNA topoisomerase II and DNA (Nelson, E.M., Tewey, K.M., and Liu, L.F. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1361-1365). Antitumor epipodophyllotoxins (VP-16 and VM-26) which do not intercalate DNA can similarly induce protein-linked DNA breaks in cultured mammalian cells. In vitro studies using purified mammalian DNA topoisomerase II show that epipodophyllotoxins interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II by stabilizing a cleavable complex. Treatment of this stabilized cleavable complex with protein denaturants results in DNA strand breaks and the covalent linking of a topoisomerase subunit to the 5'-end of the broken DNA. Furthermore, epipodophyllotoxins also inhibit the strand-passing activity of mammalian DNA topoisomerase II, presumably as a result of drug-enzyme interaction. The agreement between the in vivo and in vitro studies suggests that mammalian DNA topoisomerase II is a drug target in vivo. The similarity between the effect of epipodophyllotoxins on mammalian DNA topoisomerase II and the effect of nalidixic acid on Escherichia coli DNA gyrase suggests that the cytotoxic action of epipodophyllotoxins may be analogous to the bactericidal action of nalidixic acid.  相似文献   

9.
Fatty acid amide hydrolase (FAAH) is an integral membrane serine hydrolase responsible for the degradation of fatty acid amide signaling molecules such as endocannabinoid anandamide (AEA), which has been shown to possess cannabinoid-like analgesic properties. Herein we report the optimization of spirocyclic 7-azaspiro[3.5]nonane and 1-oxa-8-azaspiro[4.5]decane urea covalent inhibitors of FAAH. Using an iterative design and optimization strategy, lead compounds were identified with a remarkable reduction in molecular weight and favorable CNS drug like properties. 3,4-Dimethylisoxazole and 1-methyltetrazole were identified as superior urea moieties for this inhibitor class. A dual purpose in vivo efficacy and pharmacokinetic screen was designed to be the key decision enabling experiment affording the ability to move quickly from compound synthesis to selection of preclinical candidates. On the basis of the remarkable potency, selectivity, pharmacokinetic properties and in vivo efficacy, PF-04862853 (15p) was advanced as a clinical candidate.  相似文献   

10.
The lipophosphoglycan (LPG) of Leishmania promastigotes plays key roles in parasite survival in both insect and mammalian hosts. Evidence suggests that LPG decreases phagosome fusion properties at the onset of infection in macrophages. The mechanisms of action of this molecule are, however, poorly understood. In the present study, we used a panoply of Leishmania mutants displaying modified LPG structures to determine more precisely how LPG modulates phagosome-endosome fusion. Using an in vivo fusion assay measuring, at the electron microscope, the transfer of solute materials from endosomes to phagosomes, we provided further evidence that the repeating Gal(beta1,4)Man(alpha1-PO4) units of LPG are responsible for the alteration in phagosome fusion. The inhibitory effect of LPG on phagosome fusion was shown to be more potent towards late endocytic organelles and lysosomes than early endosomes, explaining how Leishmania promastigotes can avoid degradation in hydrolase-enriched compartments. The involvement of other repeating unit-containing molecules, including the secreted acid phosphatase, in the inhibition process was ruled out, as an LPG-defective mutant (Ipg1-) which secretes repeating unit-containing glycoconjugates was present in highly fusogenic phagosomes. In L. major, oligosaccharide side-chains of LPG did not contribute to the inhibition process, as Spock, an L. major mutant lacking LPG side-chains, blocked fusion to the same extent as wild-type parasites. Finally, dead parasites internalized from the culture medium were not as efficient as live parasites in altering phagosome-endosome fusion, despite the presence of LPG. However, the killing of parasites with vital dyes after their sequestration in phagosomes had no effect on the fusion properties of this organelle. Collectively, these results suggest that living promastigotes displaying full-length cell surface LPG can actively influence macrophages at an early stage of phagocytosis to generate phagosomes with poor fusogenic properties.  相似文献   

11.
Leishmania amazonensis recombinants expressing the enhanced green fluorescent protein (egfp) gene or beta-galactosidase gene (lacZ) were constructed for drug screening and histopathological analysis. The egfp or lacZ in a leishmanial transfection vector, p6.5, was introduced into L. amazonensis promastigotes, and egfp or lacZ-carrying recombinant L. amazonensis, La/egfp and La/lacZ, respectively, were obtained. Expression of egfp or lacZ in both promastigotes and amastigotes could be clearly visualized by fluorescence microscopy or by light microscopy with 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal), respectively. Fluorescence signal and beta-galactosidase activity measured by a colorimetric reaction with chlorophenol red beta-D-galactopyranoside (CPRG) were well correlated to the numbers of these parasites. The inhibitory concentration (IC50) of a leishmanicidal drug, amphotericin B, in L. amazonensis promastigotes measured using La/egfp and La/lacZ was similar to that measured by conventional methods such as cell counting, thymidine incorporation and colorimetric assay. Furthermore, the fluorescence signal and absorbance of CPRG correlated well with the numbers of La/egfp and La/lacZ amastigotes in macrophages, respectively, suggesting La/egfp and La/lacZ can be a convenient and useful tool for drug screening not only in promastigotes, but also in amastigotes of L. amazonensis. La/lacZ collected from mouse tissues four weeks after the parasite infection were stained well with X-Gal. La/lacZ allowed parasite detection at high sensitivity in the tissues of infected mice and will be useful for following infections in macrophages in vivo. Thus, the marker-transfected Leishmania parasites constructed in this study will be useful for analyses of Leishmania parasites, especially at the intracellular stage.  相似文献   

12.
ABSTRACT Leishmania donovani promastigotes were grown to late log phase, washed and resuspended in iso-osmotic buffer containing L-arginine, and the rate of urea formation was then measured under various conditions. Addition of glucose or mannose activated urea formation, whereas 2-deoxyglucose inhibited and 6-deoxyglucose had no effect. Addition of alanine or of α -aminoisobutyrate inhibited urea formation, alanine causing a greater inhibition than α -aminoisobutyrate. Addition of leucine, proline, glycine, or lysine had no effect on urea formation. The presence of glutamate also increased the rate of urea formation from arginine, but to a lesser extent than did glucose. The presence of both glucose and alanine caused no net change in urea formation, whereas the inhibitory effect of alanine exceeded the activating effect of glutamate, so that a small inhibition in the rate of urea formation occurred in the presence of both alanine and glutamate. Cells grown to 3-day stationary phase had a markedly reduced rate of arginine catabolism to urea, but the activating effect of glucose and the inhibitory effect of alanine were qualitatively similar to their effects on late log phase cells. Addition of water to cells suspended in buffer also inhibited urea formation, but this appeared to be due primarily to the release of alanine caused by the hypo-osmotic stress. Addition of mannitol to cells suspended in buffer caused a small inhibition of arginine catabolism. Addition of dibutyrylcyclic AMP, 3',5'-cyclic GMP, phorbol myristic acid, or A23187 had no effect on the rate of urea formation from arginine. It is suggested that the effects of glucose and 2-deoxyglucose on arginine catabolism depend largely upon the nature of their metabolites, whereas the effects of the various amino acids examined depend largely on the extent to which they interfere with or enhance arginine transport into the cells.  相似文献   

13.
The activity of trypanothione reductase in Leishmania amazonensis was evaluated and it was demonstrated that TR is expressed in the soluble fractions of infective promastigotes and amastigotes, while non-infective promastigotes expressed the enzyme at basal levels. This data allows an association of enzyme activity and the infective capacity of the parasite. We have also previously demonstrated that amidine compounds (N, N'-diphenyl-4-methoxy-benzamidine and pentamidine) were active against this parasite. Here, experiments concerning the effect of these compounds on TR activity, showed that both compounds significantly inhibited the enzyme. However, against glutathione reductase, only pentamidine showed a significant inhibitory action, suggesting an association with the toxic effects of this drug used in the clinic for the treatment of leishmaniasis.  相似文献   

14.
We have evaluated the cytotoxic properties against the protozoan Leishmania infantum of four water soluble cationic trans-Pt(II)Cl(2) compounds containing as inert groups NH3 and piperazine (1), 4-picoline and piperazine (2), n-butylamine and piperazine (3), and NH3 and 4-piperidino-piperidine (4). The leishmanicidal activity of compounds 3 and 4 against promastigotes of the parasite Leishmania infantum was 2.5- and 1.6-times higher than that of the cytotoxic drug cis-diamminedichloroplatinum(II), respectively. Interestingly, compounds 3 and 4 produce in Leishmania infantum promastigotes a higher amount of programmed cell death than cisplatin, which is associated with cell cycle arrest in G2/M. In contrast to cis-diamminedichloroplatinum(II), binding of compounds 3 and 4 to calf thymus DNA induces conformational changes more similar to those of trans-diamminedichloroplatinum(II) that may be attributed to denaturation of the double helix. Similarly to cis-diamminedichloroplatinum(II) and trans-diamminedichloroplatinum(II), the interaction of compounds 3 and 4 with ubiquitin results in an increase of the alpha-helix content of the protein as observed by circular dichroism spectroscopy. However, fluorescence studies indicate that compounds 3 and 4 produce a decrease in the fluorescence of the tyrosine 59 residue of ubiquitin higher than both cis-diamminedichloroplatinum(II) and trans-diamminedichloroplatinum(II). Altogether, our results suggest that the biochemical mechanism of cytotoxic activity of compounds 3 and 4 against Leishmania infantum must be different from that of cis-diamminedichloroplatinum(II). To the best of our knowledge, compounds 3 and 4 are the first reported trans-platinum complexes that show antiparasitic activity.  相似文献   

15.
We report herein the synthesis and the in vitro antileishmanial evaluation of 5-substituted-2'-deoxyuridine nucleosides. The most active compound against Leishmania donovani promastigotes was Thia-dU (3a) with an IC50 =3 microM. This compound exhibited the same activity as zidovudine (3'-azido-2'-deoxythymidine) used as nucleoside reference compound. Considering the cytotoxicity of synthetic compounds on peritoneal murine macrophages, the most toxic compound was MeThio-dU (3d) with a MTC at 10 microM. Only Methia-dU (3b) was active against intramacrophagic amastigotes with an IC50 =6.5 microM. This latter can now be evaluated in vivo, for further investigations through structure-based drug design.  相似文献   

16.
Formycin B is a structural analog of inosine that is a potent inhibitor of Leishmania multiplication. Formycin B is reportedly converted to formycin A nucleotides and incorporated into RNA by the organisms, and it is unclear whether the active form of the drug is the nucleoside itself or its several metabolites. We confirmed that formycin A nucleotides are formed by formycin B-exposed L. mexicana promastigotes, and determined that the intraparasite concentration of Formycin B and its metabolites was 6 times the extracellular formycin B concentration. Formycin B did not significantly inhibit purine nucleoside transport by intact promastigotes or purine base phosphoribosylation by parasite lysates. Thus, the nucleoside does not appear to inhibit these initial steps of purine nucleoside metabolism. Since RNA and protein synthesis in formycin B-treated intact promastigotes was found to be inhibited within 30 minutes, the effect of formycin A metabolites on leishmanial protein synthesis was investigated in in vitro protein synthesis experiments. Messenger RNA from formycin B-treated promastigotes was translated only 40% as efficiently as control promastigote mRNA by rabbit reticulocyte lysates. In addition, when formycin A-5'-triphosphate was preincubated with the rabbit reticulocyte lysates, translation of control mRNA was 86% inhibited. Formycin B toxicity to Leishmania promastigotes appears to be at least partially due to inhibition of protein synthesis by formycin A nucleotides and formycin A containing mRNA.  相似文献   

17.
The antileishmanial activity of lapachol, isolapachol, and dihydrolapachol, along with soluble derivatives (potassium salt) and acetate was obtained. All the compounds were assayed against metacyclic promastigotes of two different species of Leishmania associated to tegumentar leishmaniasis: L. amazonensis and L. braziliensis. All compounds presented significant activity, being isolapachol acetate the most active against promastigotes, with IC50/24h = 1.6 +/- 0.0 microg/ml and 3.4 +/- 0.5 microg/ml for, respectively, L. amazonensis and L. braziliensis. This compound was also assayed in vivo against L. amazonensis and showed to be active. Its toxicity in vitro was also established, and at concentration similar to the IC50, no toxicity was evidenced. In all experiments, pentamidine isethionate was used as a reference drug. The present results reinforce the potential use of substituted hydroxyquinones and derivatives as promising antileishmanial drugs and suggest a continuing study within this class of compounds.  相似文献   

18.
Tamoxifen is an antagonist of the estrogen receptor and currently used for the treatment of breast cancer. The current treatment of cutaneous leishmaniasis with pentavalent antimony compounds is not satisfactory. Therefore, in this study, due to its antileishmanial activity, effects of tamoxifen on the growth of promastigotes and amastigotes of Leishmania major Iranian strain were evaluated in vitro. Promastigotes and amastigotes were treated with different concentrations (1, 5, 10, 20, and 50 μg/ml) and time periods (24, 48, and 72 hr) of tamoxifen. After tamoxifen treatment, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 biphenyl tetrazolium bromide assay) was used to determine the percentage of live parasites and Graph Pad Prism software to calculate IC50. Flow cytometry was applied to investigate the induction of tamoxifen-induced apoptosis in promastigotes. The half maximal inhibitory concentration (IC50) of tamoxifen on promastigotes was 2.6 μg/ml after 24 hr treatment. Flow cytometry analysis showed that tamoxifen induced early and late apoptosis in Leishmania promastigotes. While after 48 hr in control group the apoptosis was 2.0%, the 50 µg/L concentration of tamoxifen increased it to 59.7%. Based on the in vitro antileishmanial effect, tamoxifen might be used for leishmaniasis treatment; however, further researches on in vivo effects of tamoxifen in animal models are needed.  相似文献   

19.
The activity of trypanothione reductase in Leishmania amazonensis was evaluated and it was demonstrated that TR is expressed in the soluble fractions of infective promastigotes and amastigotes, while non-infective promastigotes expressed the enzyme at basal levels. This data allows an association of enzyme activity and the infective capacity of the parasite. We have also previously demonstrated that amidine compounds (N, N′-diphenyl-4-methoxy-benzamidine and pentamidine) were active against this parasite. Here, experiments concerning the effect of these compounds on TR activity, showed that both compounds significantly inhibited the enzyme. However, against glutathione reductase, only pentamidine showed a significant inhibitory action, suggesting an association with the toxic effects of this drug used in the clinic for the treatment of leishmaniasis.  相似文献   

20.
Background: Cutaneous leishmaniasis is a parasitic disease, which is difficult to treat due to high drug resistance and adverse side effects. Photodynamic therapy by ultraviolet radiation using materials with high photocatalytic features like titanium dioxide nanoparticles (TiO2-NPs) is an emerging treatment for this disease. In this study, TiO2-NPs with ultraviolet (UV) radiation were administered as photodynamic therapy against Leishmania Major (LM) promastigotes.Methods: Two forms of TiO2 viz. including Anatase and Rutile were administered in two UV ranges< UVA and UVB for different time periods (30 and 60 min). Finally, 24 and 48 h after incubation, the MTS test was performed and cell survival percentage was calculated.Results: The mean size of Anatase and Rutile-NPs is approximately 32.5 and 50.9 nm respectively by DLS and FE-SEM, and crystal phase is emphasized by XRD. The combined treatment of LM with TiO2-NPs and UV has significant effects on LM promastigotes, which vary depending on NP and UV types. The synergistic effect was anticipated in the groups irradiated by UV-B in the presence of Rutile NPs.Conclusion: The combined treatment with UV- radiation and TiO2-NPs can be effective in killing the promastigotes of Leishmania major. The proper concentration of NPs and the type of UV-radiation must be taken into consideration. The results suggest improved treatment methods, after proper in vivo studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号