首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protection of telomeres 1 (Pot1) proteins specifically recognize the single-stranded 3' end of the telomere, an activity essential for sustained cellular viability and proliferation. The current model for the telomeric single-stranded DNA (ssDNA) binding activity of Schizosaccharomyces pombe Pot1 is based on a 20 kDa fragment, Pot1pN. Recent biochemical studies suggest that SpPot1 contains a larger ssDNA-binding domain and we have identified a novel ssDNA-binding domain similar in size to the human Pot1 domain. This domain, Pot1(1-389), binds extremely tightly to an oligonucleotide consisting of two conserved hexameric S. pombe telomere repeats, d(GGTTACGGTTAC), with an affinity approximately 4000-fold tighter than Pot1pN binds its cognate ssDNA. The Pot1(1-389)/ssDNA complex exhibits a half-life of 53 min, consistent with that estimated for full-length SpPot1 and significantly longer than that of Pot1pN. Single nucleotide substitutions reveal that, in contrast to Pot1pN, tandem trinucleotide repeats (GTT) within d(GGTTACGGTTAC) are specifically recognized by Pot1(1-389). Interestingly, certain single nucleotide substitutions that impacted Pot1pN binding exhibited no effect on binding affinity by Pot1(1-389). However, these substitutions reduced binding affinity when simultaneously substituted in each hexameric repeat. The non-additive nature of these substitutions suggests that certain nucleotides are coupled through the ability of the flexible ssDNA oligonucleotide to adopt alternate, thermodynamically equivalent conformations. The biochemical behavior of Pot1(1-389) is more similar to that of the full-length SpPot1 protein than to that of Pot1pN, making Pot1(1-389) a valuable domain for the future study of how full-length SpPot1 interacts with telomeric ssDNA.  相似文献   

2.
Croy JE  Fast JL  Grimm NE  Wuttke DS 《Biochemistry》2008,47(15):4345-4358
Linear chromosomes terminate in specialized nucleoprotein structures called telomeres, which are required for genomic stability and cellular proliferation. Telomeres end in an unusual 3' single-strand overhang that requires a special capping mechanism to prevent inappropriate recognition by the DNA damage machinery. In Schizosaccharomyces pombe, this protective function is mediated by the Pot1 protein, which binds specifically and with high affinity to telomeric ssDNA. We have characterized the thermodynamics and accommodation of both cognate and noncognate telomeric single-stranded DNA (ssDNA) sequences by Pot1pN, an autonomous ssDNA-binding domain (residues 1-187) found in full-length S. pombe Pot1. Direct calorimetric measurements of cognate telomeric ssDNA binding to Pot1pN show favorable enthalpy, unfavorable entropy, and a negative heat-capacity change. Thermodynamic analysis of the binding of noncognate telomeric ssDNA to Pot1pN resulted in unexpected changes in free energy, enthalpy, and entropy. Chemical-shift perturbation and structural analysis of these bound noncognate sequences show that these thermodynamic changes result from the structural rearrangement of both Pot1pN and the bound oligonucleotide. These data suggest that the ssDNA-binding interface is highly dynamic and, in addition to the conformation observed in the crystal structure of the Pot1pN/d(GGTTAC) complex, capable of adopting alternative thermodynamically equivalent conformations.  相似文献   

3.
The essential budding yeast telomere-binding protein Cdc13 is required for telomere replication and end protection. Cdc13 specifically binds telomeric, single-stranded DNA (ssDNA) 3' overhangs with high affinity using an OB-fold domain. We have determined the high-resolution solution structure of the Cdc13 DNA-binding domain (DBD) complexed with a cognate telomeric ssDNA. The ssDNA wraps around one entire face of the Cdc13-DBD OB-fold in an extended, irregular conformation. Recognition of the ssDNA bases occurs primarily through aromatic, basic, and hydrophobic amino acid residues, the majority of which are evolutionarily conserved among budding yeast species and contribute significantly to the energetics of binding. Contacting five of 11 ssDNA nucleotides, the large, ordered beta2-beta3 loop is crucial for complex formation and is a unique elaboration on the binding mode commonly observed in OB-fold proteins. The sequence-specific Cdc13-DBD/ssDNA complex presents a complementary counterpoint to the interactions observed in the Oxytricha nova telomere end-binding and Schizosaccharomyces pombe Pot1 complexes. Analysis of the Cdc13-DBD/ssDNA complex indicates that molecular recognition of extended single-stranded nucleic acids may proceed via a folding-type mechanism rather than resulting from specific patterns of hydrogen bonds. The structure reported here provides a foundation for understanding the mechanism by which Cdc13 recognizes GT-rich heterogeneous sequences with both unusually strong affinity and high specificity.  相似文献   

4.
The POT1 (protection of telomeres 1) protein binds the single-stranded overhang at the ends of chromosomes in diverse eukaryotes. It is essential for chromosome end-protection in the fission yeast Schizosaccharomyces pombe, and it is involved in regulation of telomere length in human cells. Here, we report the crystal structure at a resolution of 1.73 A of the N-terminal half of human POT1 (hPOT1) protein bound to a telomeric single-stranded DNA (ssDNA) decamer, TTAGGGTTAG, the minimum tight-binding sequence indicated by in vitro binding assays. The structure reveals that hPOT1 contains two oligonucleotide/ oligosaccharide-binding (OB) folds; the N-terminal OB fold binds the first six nucleotides, resembling the structure of the S. pombe Pot1pN-ssDNA complex, whereas the second OB fold binds and protects the 3' end of the ssDNA. These results provide an atomic-resolution model for chromosome end-capping.  相似文献   

5.
The Pot1 (protection of telomeres) protein binds to single-stranded telomeric DNA and is essential for the protection of chromosome ends from degradation and end-to-end fusions. The Pot1 amino-terminal DNA binding domain, Pot1N, adopts an oligonucleotide/oligosaccharide binding fold and binds GGTTAC motifs cooperatively and with exceptionally high sequence specificity. We have now examined DNA binding to naturally occurring telomeric substrates based on the analysis of 100 cloned chromosome ends and in the context of the full-length Pot1 protein. Here, we describe several important differences between Pot1 and Pot1N with apparent consequences for chromosome end protection. Specifically, full-length Pot1.DNA complexes are more stable, and the minimal binding site for a Pot1 monomer is extended into two adjacent telomeric repeats. We provide evidence that Pot1 contains a second DNA binding motif that recognizes DNA with reduced sequence specificity compared with the domain present in Pot1N. The two DNA binding motifs cooperate, whereby the amino-terminal oligonucleotide/oligosaccharide binding fold determines the registry of binding, and the internal DNA binding motif stabilizes the complex and expands the protected region toward the 3' -end. Consistent with a role in chromosome end capping, Pot1 prevents access of telomerase to the 3'-end and protects against exonucleolytic degradation.  相似文献   

6.
Telomere protection by mammalian Pot1 requires interaction with Tpp1   总被引:4,自引:0,他引:4  
The shelterin complex at mammalian telomeres contains the single-stranded DNA-binding protein Pot1, which regulates telomere length and protects chromosome ends. Pot1 binds Tpp1, the shelterin component that connects Pot1 to the duplex telomeric DNA-binding proteins Trf1 and Trf2. Control of telomere length requires that Pot1 binds Tpp1 as well as the single-stranded telomeric DNA, but it is not known whether the protective function of Pot1 depends on Tpp1. Alternatively, Pot1 might function similarly to the Pot1-like proteins of budding and fission yeast, which have no known Tpp1-like connection to the duplex telomeric DNA. Using mutant mouse cells with diminished Tpp1 levels, RNA interference directed to mouse Tpp1 and Pot1, and complementation of mouse Pot1 knockout cells with human and mouse Pot1 variants, we show here that Tpp1 is required for the protective function of mammalian Pot1 proteins.  相似文献   

7.
Eukaryotic chromosome ends are protected from illicit DNA joining by protein-DNA complexes called telomeres. In most studied organisms, telomeric DNA is composed of multiple short G-rich repeats that end in a single-stranded tail that is protected by the protein POT1. Mammalian POT1 binds two telomeric repeats as a monomer in a sequence-specific manner, and discriminates against RNA of telomeric sequence. While addressing the RNA discrimination properties of SpPot1, the POT1 homolog in Schizosaccharomyces pombe, we found an unanticipated ssDNA-binding mode in which two SpPot1 molecules bind an oligonucleotide containing two telomeric repeats. DNA binding seems to be achieved via binding of the most N-terminal OB domain of each monomer to each telomeric repeat. The SpPot1 dimer may have evolved to accommodate the heterogeneous spacers that occur between S. pombe telomeric repeats, and it also has implications for telomere architecture. We further show that the S. pombe telomeric protein Tpz1, like its mammalian homolog TPP1, increases the affinity of Pot1 for telomeric single-stranded DNA and enhances the discrimination of Pot1 against RNA.  相似文献   

8.
Telomere protection and length regulation are important processes for aging, cancer and several other diseases. At the heart of these processes lies the single-stranded DNA (ssDNA)-binding protein Pot1, a component of the telomere maintenance complex shelterin, which is present in species ranging from fission yeast to humans. Pot1 contains a dual OB-fold DNA-binding domain (DBD) that fully confers its high affinity for telomeric ssDNA. Studies of S. pombe Pot1-DBD and its individual OB-fold domains revealed a complex non-additive behavior of the two OB-folds in the context of the complete Pot1 protein. This behavior includes the use of multiple distinct binding modes and an ability to form higher order complexes. Here we use NMR and biochemical techniques to investigate the structural features of the complete Pot1-DBD. These experiments reveal one binding mode characterized by only subtle alternations to the individual OB-fold subdomain structures, resulting in an inaccessible 3′ end of the ssDNA. The second binding mode, which has equivalent affinity, interacts differently with the 3′ end, rendering it available for interaction with other proteins. These findings suggest a structural switch that contributes to telomere end-protection and length regulation.  相似文献   

9.
Telomeres are nucleoprotein complexes that cap and protect the ends of linear chromosomes. In humans, telomeres end in 50-300 nt of G-rich single-stranded DNA (ssDNA) overhangs. Protection of telomeres 1 (POT1) binds with nanomolar affinity to the ssDNA overhangs and forms a dimer with another telomere-end binding protein called TPP1. Whereas most previous studies utilized telomeric oligonucleotides comprising single POT1-TPP1 binding sites, here, we examined 72- to 144-nt tracts of telomeric DNA containing 6-12 POT1-TPP1 binding sites. Using electrophoretic mobility gel shift assays, size-exclusion chromatography, and electron microscopy, we analyzed telomeric nucleoprotein complexes containing POT1 alone, POT1-TPP1, and a truncated version of POT1 (POT1-N) that maintains its DNA-binding domain. The results revealed that POT1-N and POT1-TPP1 can completely coat long telomeric ssDNA substrates. Furthermore, we show that ssDNA coated with human POT1-TPP1 heterodimers forms compact, potentially ordered structures.  相似文献   

10.
When E. coli single-stranded DNA binding protein (SSB) coats single-stranded DNA (ssDNA) in the presence of 1 mM MgCl2 it inhibits the subsequent binding of recA protein, whereas SSB binding to ssDNA in 12 mM MgCl2 promotes the binding of recA protein. These two conditions correspond respectively to those which produce 'smooth' and 'beaded' forms of ssDNA-SSB filaments. By gel filtration and immunoprecipitation we observed active nucleoprotein filaments of recA protein and SSB on ssDNA that contained on average 1 monomer of recA protein per 4 nucleotides and 1 monomer of SSB per 20-22 nucleotides. Filaments in such a mixture, when digested with micrococcal nuclease produced a regular repeating pattern, approximately every 70-80 nucleotides, that differed from the pattern observed when only recA protein was bound to the ssDNA. We conclude that the beaded ssDNA-SSB nucleoprotein filament readily binds recA protein and forms an intermediate that is active in the formation of joint molecules and can retain substantially all of the SSB that was originally bound.  相似文献   

11.
The heterodimeric Oxytricha nova telomere end binding protein, the original telomere end binding protein characterized, contains four OB-fold domains used for recognition of single-stranded telomeric DNA. In contrast, only solitary OB-fold domains have been found in the telomere end binding proteins from yeast and higher eukaryotes. Using a sliding-window algorithm coupled with sequence profile-profile analysis, we provide support for the existence of multiple OB-fold domains in two other telomeric ssDNA binding proteins, vertebrate Pot1 and budding yeast Cdc13. This common usage of multiple, tandem OB-fold domains in telomeric end binding proteins extends the known evolutionary conservation of eukaryotic end-protection mechanisms.  相似文献   

12.
The essential protein Cdc13p binds the single-stranded telomeric 3' overhangs in Saccharomyces cerevisiae and takes part in the regulation of telomere length. The DNA-binding domain (DBD) of Cdc13p is structurally established by an oligonucleotide/oligosaccharide-binding (OB)-fold domain. The sequence homolog in Saccharomyces castellii (scasCDC13) was characterized previously, and the full-length protein was found to bind telomeric DNA specifically. Here, the DBD of scasCdc13p was defined to the central part (402-658) of the protein. The region necessary for forming the scasCdc13p-DBD is larger than the minimal DBD of S. cerevisiae Cdc13p. Deletion of this extended DBD region from the full-length protein completely abolished the DNA binding, indicating the importance of the extended region for the correct formation of a binding-competent DBD. The scasCdc13p-DBD bound the same 8-mer minimal binding site as the full-length protein, but an extension of the target site in the 3' end increased the stability of the DNA-protein complex. Significantly, scasCdc13p-DBD showed a retained high sequence specific binding, where the four nucleotides of most importance for the sequence specificity are highly conserved in eukaryotic telomeric repeats. Thus, the unique single-stranded DNA-binding properties of the full-length protein are entirely retained within the isolated scasCdc13p-DBD.  相似文献   

13.
The mammalian protein POT1 binds to telomeric single-stranded DNA (ssDNA), protecting chromosome ends from being detected as sites of DNA damage. POT1 is composed of an N-terminal ssDNA-binding domain and a C-terminal protein interaction domain. With regard to the latter, POT1 heterodimerizes with the protein TPP1 to foster binding to telomeric ssDNA in vitro and binds the telomeric double-stranded-DNA-binding protein TRF2. We sought to determine which of these functions-ssDNA, TPP1, or TRF2 binding-was required to protect chromosome ends from being detected as DNA damage. Using separation-of-function POT1 mutants deficient in one of these three activities, we found that binding to TRF2 is dispensable for protecting telomeres but fosters robust loading of POT1 onto telomeric chromatin. Furthermore, we found that the telomeric ssDNA-binding activity and binding to TPP1 are required in cis for POT1 to protect telomeres. Mechanistically, binding of POT1 to telomeric ssDNA and association with TPP1 inhibit the localization of RPA, which can function as a DNA damage sensor, to telomeres.  相似文献   

14.
POT1 (protection of telomere 1) is a highly conserved single-stranded telomeric binding protein that is essential for telomere end protection. Here, we report the cloning and characterization of a second member of the mouse POT family. POT1b binds telomeric DNA via conserved DNA binding oligonucleotide/oligosaccharide (OB) folds. Compared to POT1a, POT1b OB-folds possess less sequence specificity for telomeres. In contrast to POT1a, truncated POT1b possessing only the OB-folds can efficiently localize to telomeres in vivo. Overexpression of a mutant Pot1b allele that cannot bind telomeric DNA initiated a DNA damage response at telomeres that led to p53-dependent senescence. Furthermore, a reduction of the 3' G-rich overhang, increased chromosomal fusions and elevated homologous recombination (HR) were observed at telomeres. shRNA mediated depletion of endogenous Pot1b in Pot1a deficient cells resulted in increased chromosomal aberrations. Our results indicate that POT1b plays important protective functions at telomeres and that proper maintenance of chromosomal stability requires both POT proteins.  相似文献   

15.
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA–protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.  相似文献   

16.
Linear mitochondrial genomes exist in several yeast species which are closely related to yeast that harbor circular mitochondrial genomes. Several lines of evidence suggest that the conversion from one form to another occurred accidentally through a relatively simple mechanism. Previously, we (L.T. & J.N.) reported the identification of the first mitochondrial telomere-binding protein (mtTBP) that specifically binds a sequence derived from the extreme end of Candida parapsilosis linear mtDNA, and sequence analysis of the corresponding nuclear gene MTP1 revealed that mtTBP shares homology with several bacterial and mitochondrial single-stranded (ss) DNA-binding (SSB) proteins. In this study, the DNA-binding properties of mtTBP in vitro and in vivo were analyzed by electron microscopy (EM). When M13 ssDNA was used as a substrate, mtTBP exhibited similar DNA binding characteristics as human mitochondrial SSB: mtTBP formed protein globules along the DNA substrate, and the bound proteins were randomly distributed, indicating that the binding of mtTBP to M13 ssDNA is not highly cooperative. EM analysis demonstrated that mtTBP is able to recognize the 5' single-stranded telomeric overhangs in their natural context. Using isopycnic centrifugation of mitochondrial lysates of C. papsilosis we show that mtTBP is a structural part of mitochondrial nucleoids of C. parapsilosis and is predominantly bound to the mitochondrial telomeres. These data support a dual role of mtTBP in mitochondria of C. parapsilosis, serving both as a typical mitochondrial SSB and as a specific component of the mitochondrial telomeric chromatin.  相似文献   

17.
Lao Y  Gomes XV  Ren Y  Taylor JS  Wold MS 《Biochemistry》2000,39(5):850-859
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (subunits of 70, 32, and 14 kDa) that is required for cellular DNA metabolism. RPA has been reported to interact specifically with damaged double-stranded DNA and to participate in multiple steps of nucleotide excision repair (NER) including the damage recognition step. We have examined the mechanism of RPA binding to both single-stranded and double-stranded DNA (ssDNA and dsDNA, respectively) containing damage. We show that the affinity of RPA for damaged dsDNA correlated with disruption of the double helix by the damaged bases and required RPAs ssDNA-binding activity. We conclude that RPA is recognizing single-stranded character caused by the damaged nucleotides. We also show that RPA binds specifically to damaged ssDNA. The specificity of binding varies with the type of damage with RPA having up to a 60-fold preference for a pyrimidine(6-4)pyrimidone photoproduct. We show that this specific binding was absolutely dependent on the zinc-finger domain in the C-terminus of the 70-kDa subunit. The affinity of RPA for damaged ssDNA was 5 orders of magnitude higher than that of the damage recognition protein XPA (xeroderma pigmentosum group A protein). These findings suggest that RPA probably binds to both damaged and undamaged strands in the NER excision complex. RPA binding may be important for efficient excision of damaged DNA in NER.  相似文献   

18.
J M Bork  M M Cox  R B Inman 《The EMBO journal》2001,20(24):7313-7322
The Escherichia coli RecF, RecO and RecR pro teins have previously been implicated in bacterial recombinational DNA repair at DNA gaps. The RecOR-facilitated binding of RecA protein to single-stranded DNA (ssDNA) that is bound by single-stranded DNA-binding protein (SSB) is much faster if the ssDNA is linear, suggesting that a DNA end (rather than a gap) facilitates binding. In addition, the RecOR complex facilitates RecA protein-mediated D-loop formation at the 5' ends of linear ssDNAs. RecR protein remains associated with the RecA filament and its continued presence is required to prevent filament disassembly. RecF protein competes with RecO protein for RecR protein association and its addition destabilizes RecAOR filaments. An enhanced function of the RecO and RecR proteins can thus be seen in vitro at the 5' ends of linear ssDNA that is not as evident in DNA gaps. This function is countered by the RecF/RecO competition for association with the RecR protein.  相似文献   

19.
Anderson EM  Halsey WA  Wuttke DS 《Biochemistry》2003,42(13):3751-3758
The essential Saccharomyces cerevisiae protein Cdc13 binds the conserved single-stranded overhang at the end of telomeres and mediates access of protein complexes involved in both end-capping and telomerase activity. The single-stranded DNA-binding domain (ssDBD) of Cdc13 exhibits both high affinity (K(d) of 3 pM) and sequence specificity for the GT-rich sequences present at yeast telomeres. We have used the ssDBD of Cdc13 to understand the sequence-specific recognition of extended single-stranded DNA (ssDNA). The recent structure of the Cdc13 DNA-binding domain revealed that ssDNA is recognized by a large protein surface containing an oligonucleotide/oligosaccharide-binding fold (OB-fold) augmented by an extended 30-amino acid loop. Contacts to ssDNA occur via a contiguous surface of aromatic, hydrophobic, and basic residues. A complete alanine scan of the binding interface has been used to determine the contribution of each contacting side chain to binding affinity. Substitution of any aromatic or hydrophobic residue at the interface was deleterious to binding (20 to >700-fold decrease in binding affinity), while tolerance for replacement of basic residues was observed. The important aromatic and hydrophobic contacts are spread throughout the extended interface, indicating that the entire surface is both structurally and thermodynamically required for binding. While all of these contacts are important, several of the individual alanine substitutions that abolish binding cluster to one region of the protein surface. This region is vital for recognition of four bases at the 5' end of the DNA and constitutes a "hotspot" of binding affinity.  相似文献   

20.
The ends of eukaryotic chromosomes consist of long tracts of repetitive GT-rich DNA with variable sequence homogeneity between and within organisms. Telomeres terminate in a conserved 3'-ssDNA overhang that, regardless of sequence variability, is specifically and tightly bound by proteins of the telomere-end protection family. The high affinity ssDNA-binding activity of S. pombe Pot1 protein (SpPot1) is conferred by a DNA-binding domain consisting of two subdomains, Pot1pN and Pot1pC. Previous work has shown that Pot1pN binds a single repeat of the core telomere sequence (GGTTAC) with exquisite specificity, while Pot1pC binds an extended sequence of nine nucleotides (GGTTACGGT) with modest specificity requirements. We find that full-length SpPot1 binds the composite 15mer, (GGTTAC)(2)GGT, and a shorter two-repeat 12mer, (GGTTAC)(2), with equally high affinity (<3 pM), but with substantially different kinetic and thermodynamic properties. The binding mode of the SpPot1/15mer complex is more stable than that of the 12mer complex, with a 2-fold longer half-life and increased tolerance to nucleotide and amino acid substitutions. Our data suggest that SpPot1 protection of heterogeneous telomeres is mediated through 5'-sequence recognition and the use of alternate binding modes to maintain high affinity interaction with the G-strand, while simultaneously discriminating against the complementary strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号