首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hydrobiologia - In this paper, we investigated composition and trait turnover among fish assemblages in reservoirs distributed across major Brazilian basins, in order to contrast taxonomic and...  相似文献   

3.
Studies on large-scale geographic patterns of aquatic plant diversity can promote research on the generality of macroecological patterns in different ecosystems. Here, we compiled a checklist of 889 aquatic angiosperms in China, including 738 helophytes (emergent and marshy plants) and 151 hydrophytes (submerged, free-floating, and floating-leaved plants). We explore the geographic patterns and environmental correlates of aquatic plant diversity based on six metrics including species richness (SR), weighted endemism (WE), phylogenetic diversity (PD), phylogenetic endemism (PE), the standardized effect size of phylogenetic diversity (PDses), and the standardized effect size of mean phylogenetic distance (MPDses). Our results show that the diversity of aquatic plants in China is extremely uneven, with high diversity in southeastern China and low diversity in northwestern China, and the geographic patterns of taxonomic and PD are generally consistent. The pattern of helophytes differs from that of hydrophytes. Notably, the wavy-shaped pattern of aquatic plant diversity (especially SR and PD for hydrophytes) across the latitude observed in this study is not consistent with those previously observed for aquatic plants in other continents. Climatic variables and water environmental variables are the main drivers of aquatic plant diversity in China; however, the effects of individual variables differ between helophytes and hydrophytes. Water environmental variables have a greater impact on PDses and MPDses of hydrophytes than those of helophytes. Overall, our work provides insight into understanding the large-scale patterns of aquatic plant diversity and is a critical addition to previous studies on the macroecological pattern of terrestrial organisms.  相似文献   

4.
Jia  Yintao  Jiang  Yihang  Liu  Yuhan  Sui  Xiaoyun  Feng  Xiu  Zhu  Ren  Li  Kemao  Chen  Yifeng 《Reviews in Fish Biology and Fisheries》2022,32(2):623-644
Reviews in Fish Biology and Fisheries - Global biodiversity loss has increased interest in identifying the patterns and mechanisms that shape community assembly. Growing empirical evidence...  相似文献   

5.
6.
We tested the relative importance of physical versus chemical factors in explaining aquatic plant species diversity and community composition within a temperate lowland river. A total of 38 macrophyte species were identified at 33 sites along the 104 km length of the Rideau River, a National Heritage River of Canada. Species richness ranged from 0 to 15 species per site, and Shannon diversity from 0 to 2.98. Macrophyte species richness and Shannon diversity were significantly related to the physical characteristics of sites. For Shannon diversity, 77% of the increase was explained by an increase in sediment organic content and a decrease in water velocity. For species richness, 70% of the increase was explained by the latter factors in addition to an increase in the littoral zone (0–2 m depth contour) width and planktonic chlorophyll concentrations. River water chemistry did not explain any observed variation in either Shannon diversity or species richness in this moderately enriched system. In contrast to species richness, the physical and chemical variables measured failed to explain variation in community composition. Cluster analysis did not reveal any grouping of species into distinct communities. Canonical correlation analysis showed that environmental variables had minimal effect on the distribution of most species, with only floating-leaved species responding to water velocity. We conclude that physical factors can predict species diversity at the within river scale but not the species composition at a given site, underlying the need to preserve the geomorphological diversity of rivers to maintain plant diversity.  相似文献   

7.
8.
Coral Reefs - Biodiversity defines the variety of living organisms on this planet and is often quantified by the total number of species. However, species richness is insufficient in accounting for...  相似文献   

9.
Despite growing interest in using phylogenetic and functional methods to understand community assembly, few studies have examined how these methods can be used to assess seasonal variation in assembly mechanisms among migrant species. Migration can rapidly alter the relative influence of stochastic processes, species interactions, or environmental factors in shaping communities across seasons. Here, we describe seasonal dynamics in the phylogenetic and functional diversity of waterbirds in Mai Po Wetland, a subtropical region with significant and predictable temporal variation in climate and migratory bird density. Phylogenetic α diversity varied seasonally, exhibiting a clustered structure (indicative of environmental filtering) in summer, and over‐dispersed structure (indicative of biotic filtering) in winter. Phylogenetic diversity in spring and autumn exhibited a more intermediate, random structure, consistent with stochastic arrivals and departures of migrants. Functional diversity was clustered in spring but showed over‐dispersion in the other three seasons. Phylogenetic β diversity in summer and winter assemblages was characterized by two distinct groups, while spring and autumn assemblages were mixed. Our results suggest that waterbird assemblages were primarily shaped by interspecific competition in winter, while random processes tended to shape assemblages in spring and fall. Environmental factors played a more important role in summer, during periods of high heat stress. In addition, species co‐occurrence patterns were significantly more strongly related to phylogenetic similarity in winter than in summer. Our results suggest that the relative importance of assemblage mechanisms can vary seasonally in response to changing environmental conditions, suggesting that studies attempting to infer a single dominant assembly mechanism may ignore important assembly processes. Temporal shifts in assembly mechanisms may play an important role in maintaining diversity in subtropical and temperate wetlands and perhaps also in other dynamic systems.  相似文献   

10.
11.
群落分类多样性和功能多样性的海拔格局研究, 是了解生物多样性空间分布现状、揭示多样性维持和变化机制的重要途径。当前对水生昆虫分类多样性和功能多样性沿海拔梯度分布格局, 及其尺度依赖性依旧缺乏深入研究。本文基于2013-2018年在云南澜沧江流域500-3,900 m海拔梯度共149个溪流点位的水生昆虫群落调查数据, 利用线性或二次回归模型探索并比较了局部尺度(点位尺度)和不同区域尺度(100 m、150 m、200 m、250 m海拔段)的分类多样性指数(物种丰富度指数、Simpson多样性指数和物种均匀度指数)和功能多样性指数(树状图功能多样性指数(dbFD)、Rao二次熵指数(RaoQ)和功能均匀度指数(FEve))的海拔格局。结果表明, 在局部尺度, 物种丰富度指数和dbFD指数沿海拔梯度均无显著分布特征, Simpson多样性指数、RaoQ指数、物种均匀度指数和FEve指数沿海拔梯度呈现U型或者单调递减趋势。在区域尺度, 随着区域海拔带宽度的增加, 物种丰富度指数沿海拔呈不显著的单调递减格局, 但dbFD指数沿海拔分布由U型转变为单调递减趋势; Simpson多样性指数和RaoQ指数沿海拔梯度由显著U型趋势转变为无显著分布特征; 物种均匀度指数沿海拔梯度无显著分布特征, 但FEve指数呈显著增加的海拔格局。综上, 群落分类多样性指数和功能多样性指数沿海拔梯度分布存在局部和区域尺度的空间差异, 但区域尺度下二者海拔格局随海拔带宽度的增加存在一定程度的一致性。  相似文献   

12.
Liu  Xueqin  Yuan  Saibo  Wang  Hongzhu 《Hydrobiologia》2020,847(20):4207-4217
Hydrobiologia - Understanding the effects of disturbance regimes on community assembly is an essential issue in community ecology. Yet, little is known about how water regimes drive community...  相似文献   

13.
This study documented linkages between lakeshore seepage fluxes, pore water chemistry, and aquatic plants in several lakes of the Adirondack Mountains region of New York, USA. Three replicate stations were set up along each of four different lake shorelines. From June through September 1998 and from snowmelt in April through August 1999, seepage flux was measured with seepage meters. Throughout this time period, lake surface water and pore water chemistry were monitored weekly to biweekly. At each station, leaf tissue chemistry of the water lily Nuphar variegatum was measured once in each year. Sediment chemistry and plant abundance were also measured once in 1998. We found that pore water concentrations of base cations, iron, and zinc were related to the direction, magnitude, and variability of seepage fluxes. Concentrations of base cations, iron, and zinc were both highest and most variable where seepage was low (0 to 50mLm–2h–1) in contrast to being more stable where seepage was highest and variable (–608 to 612mLm–2h–1). Leaf tissue chemistry and plant abundance were also related to seepage patterns. N. variegatum leaves had elevated zinc content at stations with low average discharge. Knowledge of seepage patterns helped to explain spatial patterns of elevated trace metal content in both pore water and plant tissues. Our work suggests that the hydrological process of lakeshore seepage exerts important controls on lakeshore biogeochemistry.  相似文献   

14.
Species diversity has two components – number of species and spatial turnover in species composition (beta‐diversity). Using a field experiment focusing on a system of Mediterranean grasslands, we show that interspecific competition may influence the two components in the same direction or in opposite directions, depending on whether competitive exclusions are deterministic or stochastic. Deterministic exclusions reduce both patch‐scale richness and beta‐diversity, thereby homogenising the community. Stochastic extinctions reduce richness at the patch scale, but increase the differences in species composition among patches. These results indicate that studies of competitive effects on beta diversity may help to distinguish between deterministic and stochastic components of competitive exclusion. Such distinction is crucial for understanding the causal relationship between competition and species diversity, one of the oldest and most fundamental questions in ecology.  相似文献   

15.
高程  郭良栋 《生物多样性》2022,30(10):22429-23168
微生物主要包括细菌、真菌、古菌、病毒等类群, 是地球上出现时间最早、分布最广泛、个体数量最多, 以及物种和基因多样性十分丰富的生物类群。为了适应各种生境, 微生物衍生出腐生、寄生、共生等多样的生存策略, 在生物地球化学循环、生态系统演替与稳定性、环境修复以及人类健康等方面发挥着重要作用。传统的微生物监测方法限制了我们对微生物多样性的认知; 但是, 近年来高通量测序技术和生物信息学的发展极大推动了微生物多样性的研究进展。本文概述了近年来在微生物多样性分布格局与维持、群落构建以及功能属性多样性的最新进展; 总结分析了细菌、古菌、真菌的多样性纬度分布格局及其驱动因子, 选择、扩散、成种、漂变等过程对细菌、古菌、真菌的群落构建的贡献, 以及细菌和真菌的形态、生理生化、生长繁殖、扩散、基因组等功能性状的多样性; 提出了未来微生物多样性研究的重要领域: 环境宏真菌组研究, 微生物多样性与生态系统多功能性的关系研究, 以及微生物互作网络的生态功能研究。  相似文献   

16.
Microbial elevational diversity patterns have been extensively studied, but their shaping mechanisms remain to be explored. Here, we examined soil bacterial and fungal diversity and community compositions across a 3.4 km elevational gradient (consists of five elevations) on Mt. Kilimanjaro located in East Africa. Bacteria and fungi had different diversity patterns across this extensive mountain gradient—bacterial diversity had a U shaped pattern while fungal diversity monotonically decreased. Random forest analysis revealed that pH (12.61% importance) was the most important factor affecting bacterial diversity, whereas mean annual temperature (9.84% importance) had the largest impact on fungal diversity, which was consistent with results obtained from mixed-effects model. Meanwhile, the diversity patterns and drivers of those diversity patterns differ among taxonomic groups (phyla/classes) within bacterial or fungal communities. Taken together, our study demonstrated that bacterial and fungal diversity and community composition responded differently to climate and edaphic properties along an extensive mountain gradient, and suggests that the elevational diversity patterns across microbial groups are determined by distinct environmental variables. These findings enhanced our understanding of the formation and maintenance of microbial diversity along elevation, as well as microbial responses to climate change in montane ecosystems.  相似文献   

17.
Yang  Anjing  Zhang  Xiaoli  Agogué  Hélène  Dupuy  Christine  Gong  Jun 《Annals of microbiology》2015,65(2):879-890
The spatial and temporal patterns of diversity, community structure, and their drivers are fundamental issues in microbial ecology. This study aimed to investigate the relative importance of spatial and seasonal controls on the distribution of nitrogen cycling microbes in sediments of estuarine tidal flats, and to test the hypothesis that metals impact the distribution of nitrogen-cycling microbes in the coastal system. Two layers of sediment samples were collected from three estuarine tidal flats of Laizhou Bay in 2010 winter and 2011 summer. The alpha diversities (Shannon and Simpson indices) and community structure of ammonia oxidizing bacteria (AOB) and archaea (AOA), denitrifier and anammox bacteria (AMB) were revealed using denaturing gradient gel electrophoresis and clone library analysis of amoA, nosZ and 16S rRNA gene markers. We found that both AOB and AMB exhibited distinct seasonal patterns in either alpha diversity or community turnover; AOA had different alpha diversities in two layers, but neither spatial nor seasonal patterns were found for their community turnover. However, no distinct spatiotemporal pattern was observed for either diversity or community composition of nosZ-type denitrifiers. For correlations between alpha diversities and environmental factors, significant correlations were found between AOB and ammonium, temperature and As, between denitrifiers and nitrite, salinity and Pb, and between AMB and Pb, ratio of organic carbon to nitrogen, ammonium, pH and dissolved oxygen. Salinity and sediment grain size were the most important factors shaping AOB and AOA communities, respectively; whereas AMB community structure was mostly determined by temperature, dissolved oxygen, pH and heavy metals As and Cd. These results stress that ammonia oxidizers, denitrifiers and anammox bacteria have generally different distributional patterns across time and space, and heavy metals might have contributed to their differentiated distributions in coastal sediments.  相似文献   

18.
亚热带森林植物群落沿海拔梯度的分类与系统发育研究 生物多样性沿海拔梯度的分布格局已受到广泛关注。然而,生物多样性格局沿海拔梯度的变异及其潜在机制尚不清楚。整合生物多样性的多维度信息为理解群落构建机制提供了新思路。本研究在我国东部亚热带森林沿海拔270–1470 m的梯度上设置了17个木本植物固定样地,分析了沿海拔梯度植物群落 构建的生态和进化驱动力。基于样地内物种出现(0–1数据)和多度信息,计算群落内被子植物的物种和系统发育alpha和beta多样性、系统发育结构等,并量化多样性指标与微气候和地形之间的关系。研究发现,不论多度加权与否,物种alpha多样性均沿海拔升高而增加,物种和系统发育的相似性随海拔距离的增加而呈衰减趋势。然而,多度加权与否会形成不同的系统发育alpha多样性格局。对于系统发育结构而言,沿海拔增加并无明显趋势。地形和微气候是多样性格局和系统发育结构的主要驱动力。与未考虑物种多度的多样性指标相比,多度加权的指标与坡度和胸高断面积相关性更高。这些结果表明,由局域物种多度介导的确定性过程对沿海拔梯度的植物群落构建具有一定影响。  相似文献   

19.
Anthropogenic habitat alteration interferes the natural aquatic habitats and the system''s hydrodynamics in the Yangtze River floodplain lakes, resulting in a serious decline in freshwater biodiversity. Zooplankton communities possess major position in freshwater ecosystems, which play essential parts in maintaining biological balance of freshwater habitats. Knowledge of processes and mechanisms for affecting variations in abundance, biomass, and diversity of zooplankton is important for maintaining biological balance of freshwater ecosystems. Here, we analyzed that the temporal and spatial changes in the structure of zooplankton community and their temporal and spatial variations respond to changes in environmental factors in the middle reach of Yangtze River floodplain lakes. The results showed that zooplankton samples were classified into 128 species, and Rotifera was the most common taxa. Significant seasonal differences were found among the abundance and diversity of zooplankton. Similarly, we also found significant seasonal differences among the biomass of zooplankton functional groups. The spatial turnover component was the main contributor to the β diversity pattern, which indicated that study areas should establish habitat restoration areas to restore regional biodiversity. The NMDS plot showed that the structure of zooplankton community exhibited significant seasonal changes, where the community structure was correlated with pH, water temperature, water depth, salinity, total nitrogen, chlorophyll‐a, and total phosphorus based on RDA. This study highlights that it is very important to ensure the floodplain ecosystem''s original state of functionality for maintaining the regional diversity of the ecosystem as a whole.  相似文献   

20.
Hypersaline meromictic lakes are extreme environments in which water stratification is associated with powerful physicochemical gradients and high salt concentrations. Furthermore, their physical stability coupled with vertical water column partitioning makes them important research model systems in microbial niche differentiation and biogeochemical cycling. Here, we compare the prokaryotic assemblages from Ursu and Fara Fund hypersaline meromictic lakes (Transylvanian Basin, Romania) in relation to their limnological factors and infer their role in elemental cycling by matching taxa to known taxon-specific biogeochemical functions. To assess the composition and structure of prokaryotic communities and the environmental factors that structure them, deep-coverage small subunit (SSU) ribosomal RNA (rDNA) amplicon sequencing, community domain-specific quantitative PCR and physicochemical analyses were performed on samples collected along depth profiles. The analyses showed that the lakes harbored multiple and diverse prokaryotic communities whose distribution mirrored the water stratification patterns. Ursu Lake was found to be dominated by Bacteria and to have a greater prokaryotic diversity than Fara Fund Lake that harbored an increased cell density and was populated mostly by Archaea within oxic strata. In spite of their contrasting diversity, the microbial populations indigenous to each lake pointed to similar physiological functions within carbon degradation and sulfate reduction. Furthermore, the taxonomy results coupled with methane detection and its stable C isotope composition indicated the presence of a yet-undescribed methanogenic group in the lakes'' hypersaline monimolimnion. In addition, ultrasmall uncultivated archaeal lineages were detected in the chemocline of Fara Fund Lake, where the recently proposed Nanohaloarchaeota phylum was found to thrive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号