首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We revised the homology of wing base structure in Ephemeroptera (Insecta: Pterygota) proposed by Willkommen and Hörnschemeyer in a recent issue of Arthropod Structure and Development. The first free sclerite (s1) in Ephemeroptera should be homologized with a part of the first axillary sclerite (1Ax) of Neoptera, together with the second free sclerite, whereas the authors recognized s1 as a detached part of the anterior notal wing process. The fifth free sclerite of Ephemeroptera should be homologized with the median notal wing process of Neoptera, rather than it being homologous with a part of 1Ax in Neoptera, as the authors postulated. Hypothesized secondary fusion of the axillary sclerites in Ephemeroptera and Odonata proposed by the authors is premature, because the basal phylogeny of Pterygota is still poorly understood, and an alternative interpretation of morphological evolution (i.e., that undifferentiated axillary sclerites represent the ground plan of Pterygota) can also be drawn from the Ephemeroptera + Neoptera hypothesis.  相似文献   

2.
The structure of insect wing articulation is considered as reliable source of high level characters for phylogenetic analyses. However, the correct identification of homologous structures among the main groups of Pterygota is a hotly debated issue. Therefore, the reconstruction of the wing bases in Paleozoic extinct relatives is of great interest, but at the same time it should be treated with extreme caution due to distortions caused by taphonomic effects. The present study is focused on the wing base in Dunbaria (Spilapteridae). The articulation in Dunbaria quinquefasciata is mainly formed by a prominent upright axillary plate while the humeral plate is markedly reduced. Due to unique preservation of surface relief of the axillary plate, its composition shows a detailed pattern of three fused axillary sclerites and presumable position of the sclerite 3Ax. The obtained structures were compared among Spilapteridae and to other palaeodictyopterans Ostrava nigra (Homoiopteridae) and Namuroningxia elegans (Namuroningxiidae). The comparative study uncovered two patterns of 3Ax in Dunbaria and Namuroningxia, which correspond to their different suprafamilial classification. In contrast to previous studies these new results reveal the homologous structural elements in the wing base between Paleozoic Palaeodictyoptera and their extant relatives of Ephemeroptera, Odonata and Neoptera.  相似文献   

3.
Monophyly of the pterygote insects is generally accepted, but the relationships among the three basal branches (Odonata, Ephemeroptera and Neoptera) remain controversial. The traditional view, to separate the pterygote insects in Palaeoptera (Odonata + Ephemeroptera) and Neoptera, based on the ability or inability to fold the wings over the abdomen, has been questioned. Various authors have used different sets of morphological characters in support of all three possible arrangements of the basal pterygote branches. We sequenced 18S and 28S rDNA from 18 species of Odonata, 8 species of Ephemeroptera, 2 species of Neoptera, and 1 species of Archaeognatha in our study. The new sequences, in combination with sequences from GenBank, have been used in a parsimony jackknife analysis resulting in strong support for a monophyletic Palaeoptera. Morphological evidence and the phylogenetic implications for understanding the origin of insect flight are discussed.  相似文献   

4.
5.
The insect wing membrane is usually covered by scales, hairs, and acanthae, which serve diverse functions, such as species-specific coloration pattern, decrease of wind resistance during flight or decrease of wing wettability. Representatives of Palaeoptera (Odonata and Ephemeroptera) have no hairy structures on the wing membrane, but both its sides are fine-sculptured. In this study, the nature of the wing covering was studied using acoustic microscopy, scanning- and transmission electron microscopy followed by a variety of chemical treatments. It was shown that wing microsculptures are not cuticular outgrowths, but a wax covering, which is similar to pruinosity, which has been previously described in several odonate taxa. Data from scanning acoustic microscopy revealed that scratches on the wax covering have material density different from the surrounding material. Various functions of the wax covering are discussed.  相似文献   

6.
"古翅类"系统发育关系研究进展(昆虫纲,有翅类)   总被引:6,自引:2,他引:4  
古翅类的系统发育问题是六足总纲中有争议的热点问题之一。对现存古翅类(孵蝣目 蜻蜒目)与新翅类之间的系统发育关系有3种主要观点:古翅类(=蜉蝣目 蜻蜒目) 新翅类,蜉蝣目 (蜻蜒目 新翅类),蜻蜒目 (蜉蝣目 新翅类)。第1种观点得到化石、形态和部分基因证据支持,第2种观点得到较多形态特征支持,支持第3种观点的证据较少。这一问题的解决有赖于更多昆虫种类、化石以及分子证据的发现和研究。  相似文献   

7.
The problem with "the Paleoptera Problem:" sense and sensitivity   总被引:3,自引:0,他引:3  
While the monophyly of winged insects (Pterygota) is well supported, phylogenetic relationships among the most basal extant pterygote lineages are problematic. Ephemeroptera (mayflies) and Odonata (dragonflies) represent the two most basal extant lineages of winged insects, and determining their relationship with regard to Neoptera (remaining winged insects) is a critical step toward understanding insect diversification. A recent molecular analysis concluded that Paleoptera (Odonata Ephemeroptera) is monophyletic. However, we demonstrate that this result is supported only under a narrow range of alignment parameters. We have further tested the monophyly of Paleoptera using additional sequence data from 18SrDNA, 28S rDNA, and Histone 3 for a broader selection of taxa and a wider range of analytical methodologies. Our results suggest that the current suite of molecular data ambiguously resolve the three basal winged insect lineages and do not provide independent confirmation of Odonata + Neoptera as supported via morphological data.  相似文献   

8.
现存蜉蝣翅基纵脉走向及愈合模式(昆虫纲:蜉蝣目)   总被引:1,自引:0,他引:1  
周长发 《昆虫学报》2007,50(1):51-56
有翅昆虫翅基纵脉的走向及愈合模式在系统发育重建中占有重要地位。然而,现存蜉蝣翅基纵脉的走向及愈合状况在大部分种类变化极大,无法推测其原始状况,只在极少数种类保留有部分可见残迹。中国拟短丝蜉Siphluriscus chinensis的翅基保留有独立的亚前缘脉弓、部分中脉M和肘脉Cu主干以及前中脉MA及径分脉Rs的走向痕迹。据此并结合红斑蜉Ephemera rufomaculata 和大网脉蜉Chromarcys magnifica翅基的相关特征,本文提出了蜉蝣目主要纵脉基部走向及愈合的基本模式,其要点有:中脉主干在基部与径脉主干独自发出后先接近或愈合后又分离、它们各自分成两支后的前中脉及径分脉又先愈合再分离、肘脉始终独立。这种中脉与径脉先接近或愈合后分离的模式非常接近新翅类的情况而与蜻蜓很不相同(在蜻蜓,中脉与肘脉在基部愈合) 。亚前缘脉弓的作用相信是加强了因翅基骨板发达而相互远离的纵脉间的连结作用。这个假说也可以来解释蜻蜓复杂脉相的形成原因。  相似文献   

9.
Volatile chemicals mediate a great range of intra- and interspecific signalling and information in insects. Olfaction has been widely investigated mostly in Neoptera while the knowledge of this sense in most basal insects such as Paleoptera (Odonata and Ephemeroptera) is still poor. In the present study we show the results of an electrophysiological screening on two model species, Libellula depressa (Libellulidae) and Ischnura elegans (Coenagrionidae), representatives of the two Odonata suborders Anisoptera and Zygoptera, with the aim to deep the knowledge on the sense of smell of this insect order. The antennal olfactory sensory neurons (OSNs) of these two species responded to the same 22 compounds (out of 48 chemicals belonging to different functional groups) encompassing mostly amines, carboxylic acids or aldehydes and belonging to green leaf volatiles, vertebrate related volatiles and volatiles emitted by standing waters bacteria. The properties of Odonata OSNs are very similar to those of ionotropic receptors (IRs) expressing OSNs in other insects.  相似文献   

10.
In contemporary entomology the morphological characters of insects are not always treated according to their phylogenetic rank. Fossil evidence often gives clues for different interpretations. All primitive Paleozoic pterygote nymphs are now known to have had articulated, freely movable wings reinforced by tubular veins. This suggests that the wings of early Pterygota were engaged in flapping movements, that the immobilized, fixed, veinless wing pads of Recent nymphs have resulted from a later adaptation affecting only juveniles, and that the paranotal theory of wing origin is not valid. The wings of Paleozoic nymphs were curved backwards in Paleoptera and were flexed backwards at will in Neoptera, in both to reduce resistance during forward movement. Therefore, the fixed oblique-backwards position of wing pads in all modern nymphs is secondary and is not homologous in Paleoptera and Neoptera. Primitive Paleozoic nymphs had articulated and movable prothoracic wings which became in some modern insects transformed into prothoracic lobes and shields. The nine pairs of abdominal gillplates of Paleozoic mayfly nymphs have a venation pattern, position, and development comparable to that in thoracic wings, to which they are serially homologous. Vestigial equivalents of wings and legs were present in the abdomen of all primitive Paleoptera and primitive Neoptera. The ontogenetic development of Paleozoic nymphs was confluent, with many nymphal and subimaginal instars, and the metamorphic instar was missing. The metamorphic instar originated by the merging together of several instars of old nymphs; it occurred in most orders only after the Paleozoic, separately and in parallel in all modern major lineages (at least twice in Paleoptera, in Ephemeroptera and Odonata; separately in hemipteroid, blattoid, orthopteroid, and plecopteroid lineages of exopterygote Neoptera; and once only in Endopterygota). Endopterygota evolved from ametabolous, not from hemimetabolous, exopterygote Neoptera. The full primitive wing venation consists of six symmetrical pairs of veins; in each pair, the first branch is always convex and the second always concave; therefore costa, subcosta, radius, media, cubitus, and anal are all primitively composed of two separate branches. Each pair arises from a single veinal base formed from a sclerotized blood sinus. In the most primitive wings the circulatory system was as follows: the costa did not encircle the wing, the axillary cord was missing, and the blood pulsed in and out of each of the six primary, convex-concave vein pair systems through the six basal blood sinuses. This type of circulation is found as an archaic feature in modern mayflies. Wing corrugation first appeared in preflight wings, and hence is considered primitive for early (paleopterous) Pterygota. Somewhat leveled corrugation of the central wing veins is primitive for Neoptera. Leveled corrugation in some modern Ephemeroptera, as well as accentuated corrugation in higher Neoptera, are both derived characters. The wing tracheation of Recent Ephemeroptera is not fully homologous to that of other insects and represents a more primitive, segmental stage of tracheal system. Morphology of an ancient articular region in Palaeodictyoptera shows that the primitive pterygote wing hinge in its simplest form was straight and composed of two separate but adjoining morphological units: the tergal, formed by the tegula and axillaries; and the alar, formed by six sclerotized blood sinuses, the basivenales. The tergal sclerites were derived from the tergum as follows: the lateral part of the tergum became incised into five lobes; the prealare, suralare, median lobe, postmedian lobe and posterior notal wing process. From the tips of these lobes, five slanted tergal sclerites separated along the deep paranotal sulcus: the tegula, first axillary, second axillary, median sclerite, and third axillary. Primitively, all pteralia were arranged in two parallel series on both sides of the hinge. In Paleoptera, the series stayed more or less straight; in Neoptera, the series became V-shaped. Pteralia in Paleoptera and Neoptera have been homologized on the basis of the fossil record. A differential diagnosis between Paleoptera and Neoptera is given. Fossil evidence indicates that the major steps in evolution, which led to the origin first of Pterygota, then of Neoptera and Endopterygota, were triggered by the origin and the diversification of flight apparatus. It is believed here that all above mentioned major events in pterygote evolution occurred first in the immature stages.  相似文献   

11.
Zhang J  Zhou C  Gai Y  Song D  Zhou K 《Gene》2008,424(1-2):18-24
The first complete mitochondrial genome of a mayfly, Parafronurus youi (Arthropoda: Insecta: Pterygota: Ephemeroptera: Heptageniidae), was sequenced using a long PCR-based approach. The genome is a circular molecule of 15,481 bp in length, and encodes the set of 38 genes. Among them, 37 genes are found in other conservative insect mitochondrial genomes, and the 38(th) unique gene is trnM-like (trnM2). The duplication-random loss model can be used to explain one of the translocations at least. The A+T content of the control region is 57%, the lowest proportion detected so far in Hexapoda. Based on the nucleotide dataset and the corresponding amino acid dataset of 12 protein-coding genes, Bayesian inference and maximum likelihood analyses yielded stable support for the relationship of the three basal clades of winged insects as Ephemeroptera+(Odonata+Neoptera).  相似文献   

12.
The mayfly species Siphluriscus chinensis (Siphluriscidae) has valuable structures useful for phylogeny reconstruction, given its putative basal position within the Ephemeroptera. Here its nearly complete mitochondrial genome is sequenced. We built phylogenetic trees through multiple analytical strategies with some other insect mitogenomes. Structurally, the obtained mitochondrial genome of S. chinensis is 16,616 bp in length, 1 containing 37 genes and an extra trnK-like (trnK2 (AAA)) gene. The 12 PCGs start with typical ATN codons, except the nad1 gene which starts with an unnormalized TTG. Like other known mayfly mitogenomes, the strand bias has negative AT-skew and negative GC-skew. Phylogenetically, our topologies suggest that Odonata is the basally diverged clade in Pterygota; Ephemeroptera is the sister group of the Neoptera; and S. chinensis is indeed the most basal mayfly branch.  相似文献   

13.
从12目具翅昆虫中选出16个代表种,对其后足基骨片的形态特征在不同类群中的衍变进行分析比较,据此构建反映下列初步进化关系的系统树:[Ephemeroptera+(Odonata+Neoptera)]+[Plecoptera+(Megaloptera+Neuroptera+(Orthoptera+(Hemiptera+(...  相似文献   

14.
15.
The problem of olfaction in Paleoptera (Odonata, Ephemeroptera) cannot be considered fully elucidated until now. These insects have been traditionally considered anosmic, because their brain lacks glomerular antennal lobes, typically involved in Neoptera odor perception. In order to understand if the presumed coeloconic olfactory receptors described on the antennal flagellum of adult Odonata are really functioning, we performed an electrophysiological investigation with electroantennogram (EAG) and single cell recordings (SCR), using Libellula depressa L. (Odonata, Libellulidae) as a model species. Odors representing different chemical classes such as (Z)-3-hexenyl acetate (acetate ester), (E)-2-hexenal, octanal (aldehydes), (Z)-3-hexen-1-ol (alcohol), propionic acid, butyric acid (carboxylic acids), and 1,4-diaminobutane (amine) were tested. Most of the tested chemicals elicited depolarizing EAG responses in both male and female antennae; SCR show unambiguously for the first time the presence of olfactory neurons in the antennae of L. depressa and strongly support the olfactory function of the coeloconic sensilla located on the antennal flagellum of this species. Electrophysiological activity may not necessarily indicate behavioral activity, and the biological role of olfactory responses in Odonata must be determined in behavioral bioassays. This study represents a starting point for further behavioral, electrophysiological, neuroanatomical and molecular investigation on Odonata olfaction, a research field particularly interesting owing to the basal position of Paleoptera, also for tracing evolutionary trends in insect olfaction.  相似文献   

16.
We present the complete mitochondrial DNA sequence of Eupolyphaga sinensis. This closed circular molecule is 15553 bp long and consists of 37 genes that encode for 13 inner membrane proteins, 2 ribosomal RNAs and 22 transfer RNAs. The genome shares the gene order and orientation with previously known Blattaria mitochondrial genomes. All tRNAs could be folded into the typical cloverleaf secondary structure, but the tRNASer (AGN) appears to be missing the DHU arm. The A + T-rich region is 857 bp long and longer than other cockroaches. Based on the concatenated amino acid sequences of all protein coding genes of E. sinensis in conjunction with those 23 other arthropod sequences, we reconstruct the phylogenetic tree. Phylogenetic analyses shows that Blataria (including Isoptera) and the Mantodea are sister groups. Furthermore the relationship of the three basal clades of winged insects are different from the three previous hypotheses ((Ephemeroptera + Odonata) +Neoptera, Ephemeroptera + (Odonata + Neoptera), Odonata + (Ephemeroptera +Neoptera)). The Ephemeroptera (Parafronurus youi) clusters with the Plecoptera (Pteronarcys princes).  相似文献   

17.
We have examined the fine structure of dorsal rim ommatidia in the compound eye of the three odonate species Sympetrum striolatum, Aeshna cyanea and Ischnura elegans. These ommatidia exhibit several specializations: (1) the rhabdoms are very short, (2) there is no rhabdomeric twist, and (3) the rhabdoms contain only two, orthogonally-arranged microvillar orientations. The dorsal rim ommatidia of several other insect species are known to be anatomically specialized in a similar way and to be responsible for polarization vision. We suggest that the dorsal rim area of the odonate compound eye plays a similar role in polarization vision. Since the Odonata are a primitive group of insects, the use of polarized skylight for navigation may have developed early in insect phylogeny.  相似文献   

18.
杨海东  白明  李莎  路园园  马德 《昆虫学报》2015,58(12):1322-1330
【目的】昆虫的翅非常精巧与灵活,翅脉及翅关节的形态及功能长久以来受到众多领域科学家的广泛关注。由于历史条件的限制,昆虫翅的研究主要集中在翅脉,即使少量的有关翅关节形态的研究也主要是停留在二维形态数据分析的层面上。更重要的是,各骨片内部形态结构还未见报道。本研究的目的就是为了重建翅关节骨片内部和外部复杂的三维形态结构,全面呈现利用传统形态学方法无法获得的形态学信息,进而深入探究昆虫翅的形态与功能的关系。【方法】本文利用显微CT对鞘翅目4种金龟进行了扫描,通过计算机三维重建技术,对折叠和展开状态时后翅关节各个骨片(第1, 2和3腋片及中片)的内部和外部的三维形态进行研究,展示和分析昆虫翅关节内部与外部形态结构和空间运动的复杂性。【结果】翅关节骨片的三维重建模型及虚拟切面图展示了其复杂的外部形态,主要表现在表面曲率的不均匀变化和部分结构的互相遮挡两个方面。前者主要表现骨片表面具有突起、沟槽、弯折以及外长物等。后者指各骨片均呈现了不同程度的弯折,有的弯折还会互相接触,最终形成筒状结构,这样不可避免造成部分结构被遮挡或包裹。三维重建模型的断层图显示了翅关节骨片并非是实心的结构,而是分为两层:靠近表皮的为高度骨化的外骨骼,而靠近骨片核心则为疏松的类似海绵状结构。本文还展示了各个骨片在后翅折叠状和展开状态下的空间位置,并对所研究的4个科的翅关节骨片的三维形态进行了比较。【结论】翅关节骨片具有复杂的内部和外部形态结构。关节骨片的内部海绵结构和外层强烈骨化的双层结构,可能与其尽量减小骨片的重量和节约运动能量,同时又尽量保持骨片的刚性结构的形态适应策略有关。此类形态适应在材料学、空气动力学等领域具有重要的仿生学意义。  相似文献   

19.
The phylogenetic relationships of the winged insect lineages – mayflies (Ephemeroptera), damselflies and dragonflies (Odonata), and all other winged insects (Neoptera) – are still controversial with three hypotheses supported by different datasets: Palaeoptera, Metapterygota and Chiastomyaria. Here, we reanalyze available phylogenomic data with a focus on detecting confounding and alternative signal. In this context, we provide a framework to quantitatively evaluate and assess incongruent molecular phylogenetic signal inherent in phylogenomic datasets. Despite overall support for the Palaeoptera hypothesis, we also found considerable signal for Chiastomyaria, which is not easily detectable by standardized tree inference approaches. Analyses of the accumulation of signal across gene partitions showed that signal accumulates gradually. However, even in case signal only slightly supported one over the other hypothesis, topologies inferred from large datasets switch from statistically strongly supported Palaeoptera to strongly supported Chiastomyaria. From a morphological point of view, Palaeoptera currently appears to be the best-supported hypothesis; however, recent analyses were restricted to head characters. Phylogenetic approaches covering all organ systems including analyses of potential functional or developmental convergence are still pending so that the Palaeoptera problem has to be considered an open question in insect systematics.  相似文献   

20.
The acquisition of wings in insects is the most significant subject in considering the diversification and adaptive radiation of insects, that is, the “macro‐evolution” of insects. In the discussion of the origin of insect wings, Palaeoptera has attracted particular attention in phylogenetic and evolutionary studies. In particular, Ephemeroptera have segmental gill‐structures on their abdominal segments during their nymphal stage, and these have been noted in discussions regarding their homology and/or serial homology between wings, gills and appendages. Although Odonata has received little attention in the course of these discussions, there are cases of segmental gill‐like structures on their abdomen in the two families, Euphaeidae and Polythoridae. Under such cirumstances, in this study, the embryological developmental process in Euphaea yayeyamana of Euphaeidae was observed, focusing on the formation process of the gill‐like structures. As a result, it was revealed that four of the seven pairs of gill‐like projection structures started their visible formation within the middle stages of embryonic development, and the remaining three pairs developed during the early stages of post‐embryogenesis. Some joint‐like structures existed in all of the gill‐like projections. It was revealed that muscle tissue was interposed within these protrusions and that all of the projections themselves fully articulated, and that the nervous system was extended into the protrusions. All of the gill‐like projections strongly suggested their homology with the cephalic and thoracic appendages, when we considered them with regard to their serial homology based on the topology of their formation position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号